Premise: The prompt categorization of isolates into described clonal lineages is a key tool for the management of its associated disease, potato late blight. New isolates of this pathogen are currently classified by comparing their microsatellite genotypes with characterized clonal lineages, but an automated classification tool would greatly improve this process. Here, we developed a flexible machine learning-based classifier for genotypes.
Methods: The performance of different machine learning algorithms in classifying genotypes into its clonal lineages was preliminarily evaluated with decreasing amounts of training data. The four best algorithms were then evaluated using all collected genotypes.
Results: mlpML, cforest, nnet, and AdaBag performed best in the preliminary test, correctly classifying almost 100% of the genotypes. AdaBag performed significantly better than the others when tested using the complete data set (Tukey HSD < 0.001). This algorithm was then implemented in a web application for the automated classification of genotypes, which is freely available at https://github.com/cpatarroyo/genotypeclas.
Discussion: We developed a gradient boosting-based tool to automatically classify genotypes into its clonal lineages. This could become a valuable resource for the prompt identification of clonal lineages spreading into new regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443441 | PMC |
http://dx.doi.org/10.1002/aps3.11603 | DOI Listing |
Gates Open Res
January 2025
Liverpool School of Tropical Medicine, Liverpool, England, UK.
Typhoid fever is a significant public health problem endemic in Southeast Asia and Sub-Saharan Africa. Antimicrobial treatment of typhoid is however threatened by the increasing prevalence of antimicrobial resistant (AMR) Typhi, especially in the globally successful lineage (4.3.
View Article and Find Full Text PDFBMC Genomics
January 2025
Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
Background: F plasmids are abundant in E. coli, carrying a variety of genetic cargo involved in fitness, pathogenicity, and antimicrobial resistance. ColV and pUTI89-like plasmids have drawn attention for their potential roles in various forms of extra-intestinal pathogenicity.
View Article and Find Full Text PDFHeliyon
January 2025
ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France.
causes hospital-acquired infections in human patients with compromised immune system. Strains associated to nosocomial infections are often resistant to carbapenems and belong to few international clones (IC1-11). .
View Article and Find Full Text PDFJ Hosp Infect
January 2025
CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France; UMR_S 1230 Inserm BRM, University of Rennes, Rennes, France. Electronic address:
Purpose: Since 2021, several reports of Staphylococcus haemolyticus outbreaks in neonatal intensive care units (NICUs) have been reported in France. The aim of this study was to understand how it became established in the NICUs of two facilities, which share the care of newborns.
Methods: All positive S.
Ann Clin Microbiol Antimicrob
January 2025
Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan.
Background: Nemonoxacin is a new quinolone with an antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Certain sequence types (STs) have been emerging in Taiwan, including fluoroquinolone-resistant ST8/USA300. It's an urgent need to determine nemonoxacin susceptibility against ST8/USA300 and other emerging lineages, if any.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!