Objective: The importance of early microbial dysbiosis in later development of obesity and metabolic disorders has been a subject of debate. Here we tested cause and effect in mice.

Methods: Germ-free male Swiss Webster mice were colonized in a specific-pathogen-free (SPF) facility at 1 week (1W) and 3 weeks (3W) of age. They were challenged with a high-fat diet and their responses were compared with SPF mice. Gut microbiota was analyzed by 16S rRNA gene sequencing. Moreover, RNA sequencing of the liver was performed on additional 3W and SPF mice on a regular chow diet.

Results: There were no significant differences in weight, food consumption, epididymal fat weight, HbA1c levels, and serum insulin and leptin, whereas the early germ-free period resulted in mice with impaired glucose tolerance. Both the 1W and 3W group peaked 56% ( < 0.05) and 66% ( < 0.01) higher in blood glucose than the SPF control group, respectively. This was accompanied by a 45% reduction in the level of the anti-inflammatory cytokine IL-10 in the 1W mice ( < 0.05). There were no differences in the gut microbiota between the groups, indicating that all mice colonized fully after the germ-free period. Marked effects on hepatic gene expression (728 differentially expressed genes with adjusted < 0.05 and a fold change ± 1.5) suggested a potential predisposition to a higher risk of developing insulin resistance in the 3W group.

Conclusions: Lack of microbes early in life had no impact on adiposity but led to insulin resistance and altered liver gene expression related to glucose metabolism in mice. The study strongly supports the notion that microbial signaling to the liver in the beginning of life can alter the host's risk of developing metabolic disorder later in life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446614PMC
http://dx.doi.org/10.1155/2024/5846674DOI Listing

Publication Analysis

Top Keywords

insulin resistance
12
gene expression
12
hepatic gene
8
mice
8
mice colonized
8
spf mice
8
gut microbiota
8
germ-free period
8
risk developing
8
delayed gut
4

Similar Publications

Effects of the Mediterranean Diet on the Components of Metabolic Syndrome Concerning the Cardiometabolic Risk.

Nutrients

January 2025

Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (Promise) G. D'Alessandro, University of Palermo, 90127 Palermo, Italy.

Metabolic syndrome is a cluster of risk factors, including abdominal obesity, insulin resistance, hypertension, dyslipidemia (intended as an increase in triglyceride levels and a reduction in HDL cholesterol levels), and elevated fasting glucose, that increase the risk of cardiovascular disease and type 2 diabetes. With the rising prevalence of metabolic syndrome, effective dietary interventions are essential in reducing these health risks. The Mediterranean diet, rich in fruits, vegetables, whole grains, legumes, nuts, and olive oil and moderate in fish and poultry, has shown promise in addressing metabolic syndrome and its associated components.

View Article and Find Full Text PDF

Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.

Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.

View Article and Find Full Text PDF

The Role of Lifestyle Interventions in PCOS Management: A Systematic Review.

Nutrients

January 2025

Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India.

Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine disorders among reproductive-aged women. It is characterized by hyperandrogenism, anovulation, and polycystic ovaries. Lifestyle changes are suggested as first-line interventions in managing PCOS.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

The Effect of the 14:10-Hour Time-Restricted Feeding (TRF) Regimen on Selected Markers of Glucose Homeostasis in Diet-Induced Prediabetic Male Sprague Dawley Rats.

Nutrients

January 2025

Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.

Background: Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!