A Janus Adhesive Hydrogel with Integrated Attack and Defense for Bacteria Killing and Antifouling.

BME Front

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China.

Published: October 2024

Skin wound exposed to complex external environment for a long time is highly susceptible to bacterial infection. This work designs a Janus adhesive dual-layer hydrogel containing in situ silver nanoparticles (named PSAP/DXP@AgNPs) with integrated attack and defense to simultaneously kill the existing bacteria and prevent foreign bacterial contamination. The current gauze dressing fixed by tape fails to well fit at skin wound and lacks intrinsic antibacterial property, making it highly prone to causing secondary infection. Moreover, foreign bacteria may contaminate the wound dressing during use, further increasing the risk of secondary infection. In this work, a Janus adhesive dual-layer PSAP/DXP@AgNPs hydrogel is prepared by sequentially building the PSAP gel layer containing zwitterionic poly(sulfobetaine methacrylamide) (PSBMA) on the DXP@AgNPs gel layer containing in situ catechol-reduced AgNPs. The flexible PSAP/DXP@AgNPs can adapt shape change of skin and adhere to skin tissue with interfacial toughness of 153.38 J m relying on its DXP@AgNPs layer, which is beneficial to build favorable fit. The in situ reduced AgNPs released from the DXP@AgNPs layer of PSAP/DXP@AgNPs exhibit obvious antibacterial effects against and , with antibacterial rates of 99% and 88%, respectively. Meanwhile, the hydrated PSAP layer of PSAP/DXP@AgNPs containing PSBMA is able to prevent the bacterial contamination, decreasing the risk of secondary infection. Besides, cell experiments demonstrate that PSAP/DXP@AgNPs is biocompatible. The PSAP/DXP@AgNPs hydrogel with integrated attack and defense simultaneously possessing bacteria-killing and bacteria-antifouling properties is a potential alternative in treating infected skin wound.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445787PMC
http://dx.doi.org/10.34133/bmef.0059DOI Listing

Publication Analysis

Top Keywords

janus adhesive
12
integrated attack
12
attack defense
12
skin wound
12
secondary infection
12
hydrogel integrated
8
infection work
8
adhesive dual-layer
8
defense simultaneously
8
bacterial contamination
8

Similar Publications

Optimal submicron roughness for balancing degradation behavior, immune modulation, and microbial adhesion on zinc-based barrier membranes.

Biomater Adv

December 2024

Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510180, China. Electronic address:

Metallic zinc (Zn) has been demonstrated to be a promising alternative to barrier membrane materials for guided bone regeneration. Surface roughness significantly affects the properties of degradable Zn-based metals, especially within the Janus micro-environments of tissue regeneration. However, the effects of optimal surface roughness on Zn remain unknown.

View Article and Find Full Text PDF

Janus LAAM-loaded electrospun fibrous buccal films for treating opioid use disorder.

Biomaterials

December 2024

Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA. Electronic address:

The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the lower respiratory tract microbiome is essential for studying respiratory diseases, but research has been limited due to sampling difficulties, particularly in healthy and diseased individuals.
  • Using advanced metagenomic sequencing from 675 pigs, researchers created a comprehensive lung microbial gene catalog with over 10 million unique genes, revealing many previously unknown species and genomes.
  • The study identified specific microbial genes and their associated virulence factors linked to lung lesions in pigs, highlighting the complex interactions that affect lung health and suggesting similarities between pig and human lung microbiomes.
View Article and Find Full Text PDF

Concurrent effects and dynamic wetting abilities of nanometals anchored redox-active Janus nanoarchitectures on cotton fabric for sustainable catalysis and disinfection.

Int J Biol Macromol

December 2024

Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:

Article Synopsis
  • Designed a new type of catalyst using a unique Lous-leaf-inspired nanoarchitecture that prevents contamination and improves efficiency in disinfection processes.
  • Utilized hydrophilic polydopamine to help create a special coating on cotton fabric that interacts well with contaminants and boosts antibacterial action, all without needing extra chemicals.
  • Achieved over 99% antibacterial effectiveness against E. coli even after multiple washes, demonstrating strong resistance and the ability to tackle common challenges in catalytic reactions.
View Article and Find Full Text PDF

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!