Skin wound exposed to complex external environment for a long time is highly susceptible to bacterial infection. This work designs a Janus adhesive dual-layer hydrogel containing in situ silver nanoparticles (named PSAP/DXP@AgNPs) with integrated attack and defense to simultaneously kill the existing bacteria and prevent foreign bacterial contamination. The current gauze dressing fixed by tape fails to well fit at skin wound and lacks intrinsic antibacterial property, making it highly prone to causing secondary infection. Moreover, foreign bacteria may contaminate the wound dressing during use, further increasing the risk of secondary infection. In this work, a Janus adhesive dual-layer PSAP/DXP@AgNPs hydrogel is prepared by sequentially building the PSAP gel layer containing zwitterionic poly(sulfobetaine methacrylamide) (PSBMA) on the DXP@AgNPs gel layer containing in situ catechol-reduced AgNPs. The flexible PSAP/DXP@AgNPs can adapt shape change of skin and adhere to skin tissue with interfacial toughness of 153.38 J m relying on its DXP@AgNPs layer, which is beneficial to build favorable fit. The in situ reduced AgNPs released from the DXP@AgNPs layer of PSAP/DXP@AgNPs exhibit obvious antibacterial effects against and , with antibacterial rates of 99% and 88%, respectively. Meanwhile, the hydrated PSAP layer of PSAP/DXP@AgNPs containing PSBMA is able to prevent the bacterial contamination, decreasing the risk of secondary infection. Besides, cell experiments demonstrate that PSAP/DXP@AgNPs is biocompatible. The PSAP/DXP@AgNPs hydrogel with integrated attack and defense simultaneously possessing bacteria-killing and bacteria-antifouling properties is a potential alternative in treating infected skin wound.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445787 | PMC |
http://dx.doi.org/10.34133/bmef.0059 | DOI Listing |
Biomater Adv
December 2024
Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510180, China. Electronic address:
Metallic zinc (Zn) has been demonstrated to be a promising alternative to barrier membrane materials for guided bone regeneration. Surface roughness significantly affects the properties of degradable Zn-based metals, especially within the Janus micro-environments of tissue regeneration. However, the effects of optimal surface roughness on Zn remain unknown.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA. Electronic address:
The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:
Nat Commun
December 2024
Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!