Hydrophobic surfaces require finely tuned process chains due to the scale, complexity, and patterning methods. For this purpose, vat photopolymerization (VPP) additive manufacturing is a promising method for surface generation; however, together with the fabrication process, the design phase needs to be optimized to achieve the desired surface property. This work presents the influence of the design features of hydrophobic surfaces through multiple studies on simple pillar structures, intrinsic single-unit geometries, and surface deposition on complex substrates. The results showed that depending on the dimensions of single pillar dimensions, wetting properties can extend between the contact angles (CA) of 83°-115.11°. The hydrophobicity was further increased by applying a re-entrant structure, reaching the CA of 115.24°. The surface deposition on the complex substrates significantly increased water droplet adhesion, preventing it from rolling off, which can be beneficial for manifold device protection from the hazardous influence of the environment. In addition, the influence of the surface on the acoustic properties was examined, which showed that the pattern application in the real-life device does not have a detrimental effect on the intrinsic functionality. This study showed that the design phase should be an essential part of the VPP process chain as it significantly influences the wetting properties of the surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443108 | PMC |
http://dx.doi.org/10.1089/3dp.2023.0076 | DOI Listing |
J Phys Chem B
December 2024
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.
is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou, China.
Background: Pickering emulsions prepared with octenyl succinic anhydride-modified starch (OSAS) show significant promise as replacements for animal fat. However, the underlying mechanism of incorporating an OSAS-based Pickering emulsion into a myofibrillar protein (MP) gel and its impact on the gel properties remain poorly understood. In this study, the effects of OSAS at varying concentrations (0-10.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
A bioinspired method for surface modification of nanocellulose has been proposed, drawing inspiration from the lignification process in plant cell walls. Unlike traditional methods for synthesizing dehydrogenation polymers (DHPs) of lignin, this study innovatively prepared a water-soluble DHPs precursor, coniferin, which underwent homogeneous polymerization catalyzed by peroxidase to generate DHPs that adhered to the surface of nanocellulose. Modified nanocellulose was then filtered into membranes, and the presence of DHPs increased the water contact angle, achieving high hydrophobicity with little DHPs content.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China. Electronic address:
Marinating is a crucial stage in meat processing. However, traditional marinating takes a long time and is prone to nutrient loss. Pulsed electric field (PEF) technology, an innovative non-thermal processing method, has been shown to improve the efficiency of meat marinating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!