AI Article Synopsis

  • Exosomes are linked to the formation of calcium oxalate (CaOx) kidney stones, and this study explores the role of tRNA-derived small RNAs (tsRNAs) in this process.
  • Urine samples from three CaOx stone patients and three healthy individuals were analyzed, revealing four significantly upregulated DEtsRNAs in the patients, particularly tRF-Lys-TTT-5005c.
  • The research suggests that these DEtsRNAs may influence kidney stone formation by affecting key signaling pathways, indicating their potential as diagnostic biomarkers and treatment targets for nephrolithiasis.

Article Abstract

Background And Objective: Exosomes have been confirmed to be implicated in the pathogenesis of calcium oxalate (CaOx) stones. tRNA-derived small RNAs (tsRNAs) are among the oldest small RNAs involved in exosome-mediated intercellular communication, yet their role in kidney stones remains unexplored. This pilot study aimed to identify differentially expressed tsRNAs (DEtsRNAs) in urine exosomes between CaOx stone patients and healthy controls and explore their potential roles in nephrolithiasis.

Method: First-morning urine samples were collected from three CaOx stone patients and three healthy controls. Urinary exosomes were isolated and analyzed by high-throughput sequencing to generate the expression profiles of tsRNAs and detect DEtsRNAs. Predicted target genes of DEtsRNAs were subjected to functional enrichment analysis. The authors also combined the public dataset GSE73680 to investigate how DEtsRNAs were related to stone formation.

Results: Four DEtsRNAs were significantly upregulated in CaOx stone patients compared to healthy controls. tRF-Lys-TTT-5005c was the most elevated, followed by tRF-Lys-CTT-5006c, tRF-Ala-AGC-5017b, and tRF-Gly-CCC-5004b. Bioinformatics analysis indicated that these four types of DEtsRNAs might serve distinct biological functions. Combined with data mining from the public dataset GSE73680, the authors assumed that exosomes carrying tRF-Lys-TTT-5005c and tRF-Lys-CTT-5006c could inhibit the expression of SMAD6, FBN1, and FZD1, thereby activating the BMP signaling pathway, which might induce an osteogenic-like transformation in target cells, resulting in the formation of Randall's plaques and CaOx stones.

Conclusion: The authors' findings shed light on the potential roles of tsRNAs in the pathogenesis of CaOx stone disease, highlighting exosomal DEtsRNAs as promising diagnostic biomarkers and therapeutic targets in nephrolithiasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444539PMC
http://dx.doi.org/10.1097/MS9.0000000000002563DOI Listing

Publication Analysis

Top Keywords

caox stone
16
small rnas
12
potential roles
12
stone patients
12
healthy controls
12
expression profiles
8
trna-derived small
8
calcium oxalate
8
stone disease
8
public dataset
8

Similar Publications

A 50-year-old woman with kidney failure complained of back pain and an inability to walk. The medical history included hypothyroidism, nephrolithiasis, and resistant anemia aligned with several transfusions. The examination showed hepatosplenomegaly, lower limb weakness, absence of reflexes, and lack of sensations with a sensory level T6.

View Article and Find Full Text PDF
Article Synopsis
  • A study investigated the effectiveness of empagliflozin, a sodium-glucose cotransporter 2 inhibitor, in preventing kidney stones in nondiabetic adults with a history of calcium or uric acid stones.
  • The trial involved 53 participants who were given either empagliflozin or a placebo in a crossover design, focusing on changes in urine supersaturation ratios relevant to stone recurrence.
  • Results showed significant reductions in urine supersaturation ratios for calcium phosphate in calcium stone formers and uric acid in uric acid stone formers, indicating that empagliflozin may help prevent certain types of kidney stones without serious side effects.
View Article and Find Full Text PDF

Sulfated Polysaccharides Inhibit CaOx Stone Formation by Inhibiting Calcium Oxalate Crystallization, Cellular Inflammation, and Crystal Adhesion.

J Agric Food Chem

December 2024

Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Hyperoxaluria can easily induce calcium oxalate (CaOx) crystals and cause cell damage, thereby increasing the risk of kidney stone formation. In this study, three sulfated polysaccharides (PSPs) were obtained by the sulfur trioxide-pyridine method. The antioxidant activity of PSPs and the inhibitory effects of PSPs on CaOx crystallization, cellular oxidative damage, and cellular inflammation were explored in vitro, and PSPs were used to treat hyperoxaluria-induced crystallization model mice in order to validate the stone-preventive effect of PSPs in vivo.

View Article and Find Full Text PDF

The early stages of kidney crystal formation involve inflammation and hypoxia-induced cell injury; however, the role of the hypoxic response in kidney crystal formation remains unclear. This study investigated the effects of a prolyl hydroxylase domain inhibitor (roxadustat) on renal calcium oxalate (CaOx) crystal formation through in vitro and in vivo approaches. In the in vitro experiment, murine renal tubular cells (RTCs) were exposed to varying roxadustat concentrations and CaOx crystals.

View Article and Find Full Text PDF

In calcium stone formers, most stones grow attached to Randall's plaque, which can be identified by measuring the computed tomography (CT) attenuation value of renal papilla. We hypothesized that the CT attenuation value of renal papilla can predict the severity (recurrent or multiple stone former) and recurrence of the stone disease. We retrospectively reviewed the charts of 180 calcium oxalate stone formers who underwent non-contrast CT and 24-hour urine chemistry in our hospital between September 2012 and November 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!