Soft robots, inspired by living organisms in nature, are primarily made of soft materials, and can be used to perform delicate tasks due to their high flexibility, such as grasping and locomotion. However, it is a challenge to efficiently manufacture soft robots with complex functions. In recent years, 3D printing technology has greatly improved the efficiency and flexibility of manufacturing soft robots. Unlike traditional subtractive manufacturing technologies, 3D printing, as an additive manufacturing method, can directly produce parts of high quality and complex geometry for soft robots without manual errors or costly post-processing. In this review, we investigate the basic concepts and working principles of current 3D printing technologies, including stereolithography, selective laser sintering, material extrusion, and material jetting. The advantages and disadvantages of fabricating soft robots are discussed. Various 3D printing materials for soft robots are introduced, including elastomers, shape memory polymers, hydrogels, composites, and other materials. Their functions and limitations in soft robots are illustrated. The existing 3D-printed soft robots, including soft grippers, soft locomotion robots, and wearable soft robots, are demonstrated. Their application in industrial, manufacturing, service, and assistive medical fields is discussed. We summarize the challenges of 3D printing at the technical level, material level, and application level. The prospects of 3D printing technology in the field of soft robots are explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442412 | PMC |
http://dx.doi.org/10.1089/3dp.2023.0127 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China.
Soft capacitive sensors are widely utilized in wearable devices, flexible electronics, and soft robotics due to their high sensitivity. However, they may suffer delamination and/or debonding due to their low interfacial toughness. In addition, they usually exhibit a small measurement range resulting from their limited stiffness variation range.
View Article and Find Full Text PDFPhysiother Res Int
January 2025
Department of Biomedical Engineering, University of Engineering and Technology (UET) Lahore, Narowal Campus, Narowal, Pakistan.
Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China.
Affordable high-resolution cameras and state-of-the-art computer vision techniques have led to the emergence of various vision-based tactile sensors. However, current vision-based tactile sensors mainly depend on geometric optics or marker tracking for tactile assessments, resulting in limited performance. To solve this dilemma, we introduce optical interference patterns as the visual representation of tactile information for flexible tactile sensors.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
In this work, a cost-effective, scalable pneumatic silicone actuator array is introduced, designed to dynamically conform to the user's skin and thereby alleviate localised pressure within a prosthetic socket. The appropriate constitutive models for developing a finite element representation of these actuators are systematically identified, parametrised, and validated. Employing this computational framework, the surface deformation fields induced by 270 variations in soft actuator array design parameters under realistic load conditions are examined, achieving predictive accuracies within 70 µm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!