Capturing the illusive ring-shaped intermediates in A42 amyloid formation.

Biophys Rev (Melville)

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Published: September 2024

AI Article Synopsis

  • Research on amyloid fibril formation is crucial because it is linked to neurodegenerative diseases like Alzheimer’s, but there’s limited understanding of intermediate states in this process.
  • Using liquid-phase transmission electron microscopy, the study visualizes a specific intermediate structure that forms when Aβ42 peptide aggregates, revealing a ring shape with a diameter in the nanometer range.
  • The findings also suggest that the air-liquid interface plays a role in accelerating the formation of these amyloid fibrils.

Article Abstract

Protein/peptide amyloid fibril formation is associated with various neurodegenerative diseases and, hence, has been the subject of extensive studies. From a structure-evolution point of view, we now know a great deal about the initial and final states of this process; however, we know very little about its intermediate states. Herein, we employ liquid-phase transmission electron microscopy to directly visualize the formation of one of the intermediates formed during the aggregation process of an amyloid-forming peptide. As shown in figure, we find that Aβ42, the amyloid formation of which has been linked to the development of Alzheimer's disease, can populate a ring-shaped intermediate structure with a diameter of tens of nanometers; additionally, the air-liquid interface can "catalyze" the formation of amyloid fibrils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444734PMC
http://dx.doi.org/10.1063/5.0222349DOI Listing

Publication Analysis

Top Keywords

amyloid formation
8
formation
5
capturing illusive
4
illusive ring-shaped
4
ring-shaped intermediates
4
intermediates a42
4
amyloid
4
a42 amyloid
4
formation protein/peptide
4
protein/peptide amyloid
4

Similar Publications

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.

View Article and Find Full Text PDF

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

Experimental objectives were to create a chronic inflammatory model to evaluate the effects of persistent immune activation on metabolism, inflammation, and productivity in lactating dairy cows. Twelve lactating Holstein cows (631 ± 16 kg BW; 124 ± 15 DIM) were enrolled in a study with 2 experimental periods (P); during P1 (5 d), cows were fed ad libitum and baseline data were obtained. At the initiation of P2 (7 d), cows were assigned to 1 of 2 treatments: 1) saline-infused and pair-fed (PF; 5 mL intravenously (IV) sterile saline on d 1, 3, and 5; n = 6) or 2) lipopolysaccharide infused and ad libitum-fed (LPS; 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!