A new pressure-densified orthogonal hard superconducting phase of RhB.

Phys Chem Chem Phys

School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China.

Published: October 2024

AI Article Synopsis

  • Scientists predict a new strong type of RhB that works well as a superconductor under really high pressure (300 GPa).
  • This new phase is better than what was thought before and is very stable, thanks to strong bonds between its atoms.
  • It can resist being squished and superconductor properties are also examined, making it useful for tough conditions.

Article Abstract

A new hard superconducting phase of RhB with the space group is predicted, and the phase transition and mechanical and superconducting properties of RhB under 300 GPa are studied using first principles. We predict a new high-pressure phase of RhB by substituting the most stable structure of OsB, known for its excellent mechanical properties. The calculated enthalpy shows that above 112.6 GPa, is superior to as was previously predicted by particle swarm optimization. The stability of the predicted phase is checked using formation enthalpy, elastic constant and phonon dispersion. Additionally, the convex hull of the Rh-B system confirms that the phase is expected to be synthesized experimentally. The phase is an incompressible hard material with a hardness of 23.75 GPa at 300 GPa attributed to strong intralayer covalent B-B bonds. Furthermore, the phase is a relatively pressure-insensitive superconductor, with a of 8.6 K at 112.6 GPa and a pressure-dependent coefficient of -0.03 K GPa. The finding reveals a superconducting hard material that is well-suited for extreme high-pressure environments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp02758bDOI Listing

Publication Analysis

Top Keywords

phase rhb
12
hard superconducting
8
phase
8
superconducting phase
8
predicted phase
8
300 gpa
8
1126 gpa
8
hard material
8
gpa
6
pressure-densified orthogonal
4

Similar Publications

This study investigates the critical role of polymer matrices in optimizing luminescence and energy transfer, utilizing the commercial dyes Coumarin 6 (C6) and Rhodamine B (RhB) as a donor-acceptor pair. Solution-phase experiments revealed a dependence of energy transfer efficiency on solvent dielectric constant. Furthermore, embedding the dyes within Poly(methyl methacrylate) (PMMA) or Poly(vinyl butyral) (PVB) matrices significantly enhance energy transfer due to increased molecular proximity.

View Article and Find Full Text PDF

A novel biosynthesis approach was used to develop zinc selenite (ZnSeO) catalysts from the plant extracts of Nephrolepis cordifolia (ZnSeO:NC) and Ziziphus jujube (ZnSeO:ZJ) using hydrothermal method. This study investigates the structural, morphological, and optical properties of pure and biosynthesized ZnSeO catalysts. X-ray diffraction (XRD) analysis confirms the presence of an orthorhombic phase in both catalyst types.

View Article and Find Full Text PDF

The high concentration of metal compounds found in red mud (RM) can serve as cost-effective raw materials for photo Fenton catalysts in the treatment of organic dye wastewater. In this study, RM was modified with bagasse using a hydrothermal method to prepare a photo-Fenton catalyst. The degradation efficiency of Rhodamine (RhB) solution under different conditions was evaluated.

View Article and Find Full Text PDF

This study investigates the effectiveness of polyaniline oxide (PANI) nanoparticles as photocatalysts for the degradation of organic dyes under visible light irradiation. Known for their stability and adjustable conductivity, PANI nanoparticles were synthesized a hydrothermal method using P123 surfactants, followed by calcination. The morphology, structural phase, and optical properties of the synthesized PANI materials were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Ocrelizumab in Early-Stage Relapsing-Remitting Multiple Sclerosis: The Phase IIIb ENSEMBLE 4-Year, Single-Arm, Open-Label Trial.

Neurology

December 2024

From the Department of Neurology (H.-P.H.), UKD, Centre of Neurology and Neuropsychiatry and LVR-Klinikum, Heinrich-Heine University Düsseldorf, Germany; Brain and Mind Centre (H.-P.H.), University of Sydney, Australia; Department of Neurology (H.-P.H.), Palacky University Olomouc, Czech Republic; Department of Neurology (R.H.B.B.), Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, NY; Department of Neurology (T.B.), Medical University of Vienna, Comprehensive Center for Clinical Neurosciences and Mental Health, Austria; Mellen Center for MS (R.A.B.), Cleveland Clinic, OH; Neurocentre Magendie INSERM (B.B.), Université de Bordeaux, France; Department of Neurology (W.M.C.), Sir Charles Gairdner Hospital, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands; Department of Medicine and the Ottawa Hospital Research Institute (M.S.F.), University of Ottawa, Ontario, Canada; Department of Neurology (T.H.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (T.H.), University of Oslo, Norway; Department of Neurology (R.K.), Hacettepe University Faculty of Medicine, Ankara, Turkey; Centre d'Esclerosi Mútiple de Catalunya (Cemcat) (C.N.), Vall d'Hebron Hospital Universitari, Barcelona, Spain; Department of Medical and Surgical Sciences and Advanced Technologies (F.P.), GF Ingrassia, Neuroscience Section and Multiple Sclerosis Centre, University of Catania PO Policlinico G Rodolico, Italy; Loyola University Chicago (A.P.R.), IL; Department of Neurology (L.V.), AZ Sint-Jan Brugge-Oostende, Belgium; Department of Neurology (T.V.), University of Colorado School of Medicine, Aurora; Medical Image Analysis Center (MIAC AG) (J.W.), Department of Biomedical Engineering, University of Basel; F. Hoffmann-La Roche Ltd (J.W., S.C., K.K., T.K., I.K., C.R., G.-A.T.), Basel, Switzerland; and Department of Neurology (J.K.), VU University Medical Centre, Amsterdam, the Netherlands.

Background And Objectives: Early treatment of multiple sclerosis (MS) reduces disease activity and the risk of long-term disease progression. Effectiveness of ocrelizumab is established in relapsing MS (RMS); however, data in early RMS are lacking. We evaluated the 4-year effectiveness and safety of ocrelizumab as a first-line therapy in treatment-naive patients with recently diagnosed relapsing-remitting MS (RRMS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!