Photoferroelectrics that involve strong light-matter coupling are regarded as promising candidates for realizing bulk photovoltaic and photoelectric effects via light absorption. Nonetheless, understanding the photoresponse mechanism or modulation of performance from a microscopic point of view is scarcely explored through quantification of macroscopic properties. Herein, we design a model material, Gd-doped (KNa)NbO ferroelectric-transparent ceramics, and present an advantageous strategy to enhance the optoelectronic coupling through joint modulations of lattice distortion and oxygen vacancies, along with inner defects and ferroelectric domains. Significantly, their microcosmic manipulation can be intuitively and facilely evaluated by the optical transparency of each ceramic. An approximately 10 fold increase in conductivity under ultraviolet irradiation was produced. Under the cocoupling between external physical fields, the synergy of photoelectric stimulation increased the photoconductivity of the ceramics by 13.89 times. Additionally, a significant increase (4.5-fold) in the current output from the photovoltaic effect was achieved via ferroelectric domains of moderate size, whose size could be easily assessed by optical transmittance. In situ microscopic observations confirmed that the configuration of oxygen vacancy-dependent ferroelectric domains contributes to the enhanced optoelectronic response. This research provides a distinct way to develop inexpensive optocoupler devices and meet the requirements for multifunctional integration in single photoferroelectrics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c11956DOI Listing

Publication Analysis

Top Keywords

ferroelectric domains
12
photoconductivity photovoltaic
4
photovoltaic strengthened
4
strengthened microstructural
4
microstructural cotuning
4
cotuning ferroelectrics
4
ferroelectrics intuitively
4
intuitively assessed
4
assessed macroscopic
4
macroscopic transparency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!