The legislature determines the recycled and waste contents in fabrication processes to ensure more sustainable production. PLA's mechanical recycling and reuse are limited due to the performance decrease caused by thermal or hydrolytic instability. Our concept introduces an upcycling route involving PLA depolymerization using propylene glycol as a reactant, followed by the methacrylation, assuring the liquid systems' curability provided by radical polymerization. PLA-containing curable systems were studied from a rheological and thermomechanical viewpoint. The viscosity levels varied from 33 to 3911 mPa·s at 30 °C, giving a wide capability potential. The best system reached 2240 MPa storage modulus, 164.1 °C glass-transition temperature, and 145.6 °C heat-resistant index, competitive values to commercial systems. The printability was verified for all of the systems. Eventually, our concept led to SLA resin production containing PLA waste content up to 51 wt %.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480983 | PMC |
http://dx.doi.org/10.1021/acs.biomac.4c00840 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!