O-GlcNAcylation promotes malignancy and cisplatin resistance of lung cancer by stabilising NRF2.

Clin Transl Med

Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.

Published: October 2024

Background: The transcription factor NRF2 plays a significant role in regulating genes that protect cells from oxidative damage. O-GlcNAc modification, a type of posttranslational modification, is crucial for cellular response to stress. Although the involvement of both NRF2 and O-GlcNAc in maintaining cellular redox balance and promoting cancer malignancy has been demonstrated, the potential mechanisms remain elusive.

Methods: The immunoblotting, luciferase reporter, ROS assay, co-immunoprecipitation, and immunofluorescence was used to detect the effects of global cellular O-GlcNAcylation on NRF2. Mass spectrometry was utilised to map the O-GlcNAcylation sites on NRF2, which was validated by site-specific mutagenesis and O-GlcNAc enzymatic labelling. Human lung cancer samples were employed to verify the association between O-GlcNAc and NRF2. Subsequently, the impact of NRF2 O-GlcNAcylation in lung cancer malignancy and cisplatin resistance were evaluated in vitro and in vivo.

Results: NRF2 is O-GlcNAcylated at Ser103 residue, which hinders its binding to KEAP1 and thus enhances its stability, nuclear localisation, and transcription activity. Oxidative stress and cisplatin can elevate the phosphorylation of OGT at Thr444 through the activation of AMPK kinase, leading to enhanced binding of OGT to NRF2 and subsequent elevation of NRF2 O-GlcNAcylation. Both in cellular and xenograft mouse models, O-GlcNAcylation of NRF2 at Ser103 promotes the malignancy of lung cancer. In human lung cancer tissue samples, there was a significant increase in global O-GlcNAcylation, and elevated levels of NRF2 and its O-GlcNAcylation compared to paired adjacent normal tissues. Chemotherapy promotes NRF2 O-GlcNAcylation, which in turn decreases cellular ROS levels and drives lung cancer cell survival.

Conclusion: Our findings indicate that OGT O-GlcNAcylates NRF2 at Ser103, and this modification plays a role in cellular antioxidant, lung cancer malignancy, and cisplatin resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447106PMC
http://dx.doi.org/10.1002/ctm2.70037DOI Listing

Publication Analysis

Top Keywords

lung cancer
28
nrf2 o-glcnacylation
16
nrf2
14
malignancy cisplatin
12
cisplatin resistance
12
cancer malignancy
12
o-glcnacylation
9
promotes malignancy
8
cancer
8
plays role
8

Similar Publications

Four new macrolides, spirosnuolides A-D (-, respectively), were discovered from the termite nest-derived sp. INHA29. Spirosnuolides A-D are 18-membered macrolides sharing an embedded [6,6]-spiroketal functionality inside the macrocycle and are conjugated with structurally uncommon side chains featuring cyclopentenone, 1,4-benzoquinone, hydroxyfuroic acid, or butenolide moieties.

View Article and Find Full Text PDF

Background: Soft-tissue sarcoma involving the popliteal fossa remains challenging because it is difficult to achieve wide margins with limb salvage in this location. Adjuvant therapy is frequently necessary, and limb function can be adversely affected. We reviewed our experience with these tumors.

View Article and Find Full Text PDF

remains a global public health issue. Although predominantly affecting the liver, the lungs are the second most affected organ and often undergo surgical intervention. Here, a case managed by bronchoscopy and medical therapy is presented.

View Article and Find Full Text PDF

Background: Radon, a colorless and odorless radioactive gas, poses serious health risks. It is the second leading cause of lung cancer and notably increases lung cancer risk in smokers. Although previous epidemiological studies have mainly examined lung cancer rates in miners, the effects of radon on genomic stability and its molecular mechanisms are not well understood.

View Article and Find Full Text PDF

Background: Aberrant expression of RNA-binding proteins (RBPs) has been linked to a variety of diseases, including hematological disorders, cardiovascular diseases, and multiple types of cancer. Heterogeneous nuclear ribonucleoprotein C (HNRNPC), a member belonging to the heterogeneous nuclear ribonucleoprotein (hnRNP) family, plays a pivotal role in nucleic acid metabolism. Previous studies have underscored the significance of HNRNPC in tumorigenesis; however, its specific role in malignant tumor progression remains inadequately characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!