Background: Phlebotomus papatasi is considered the primary vector of Leishmania major parasites that cause zoonotic cutaneous leishmaniasis (ZCL) in the Middle East and North Africa. Phlebotomus papatasi populations have been studied extensively, revealing the existence of different genetic populations and subpopulations over its large distribution range. Genetic diversity and population structure analysis using transcriptome microsatellite markers is important to uncover the vector distribution dynamics, essential for controlling ZCL in endemic areas.

Methods: In this study, we investigated the level of genetic variation using expressed sequence tag-derived simple sequence repeats (EST-SSRs) among field and colony P. papatasi samples collected from 25 different locations in 11 countries. A total of 302 P. papatasi sand fly individuals were analyzed, including at least 10 flies from each region.

Results: The analysis revealed a high-level population structure expressed by five distinct populations A through E, with moderate genetic differentiation among all populations. These genetic differences in expressed genes may enable P. papatasi to adapt to different environmental conditions along its distribution range and likely affect dispersal.

Conclusions: Elucidating the population structuring of P. papatasi is essential to L. major containment efforts in endemic countries. Moreover, the level of genetic variation among these populations may improve our understanding of Leishmania-sand fly interactions and contribute to the efforts of vaccine development based on P. papatasi salivary proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448080PMC
http://dx.doi.org/10.1186/s13071-024-06495-zDOI Listing

Publication Analysis

Top Keywords

population structure
12
phlebotomus papatasi
12
structure analysis
8
papatasi
8
papatasi populations
8
vaccine development
8
distribution range
8
level genetic
8
genetic variation
8
populations
6

Similar Publications

Background: The lives of adolescents and young people living with HIV (LHIV) are dominated by complex psychological and social stressors. These may be more pronounced among those perinatally infected. This longitudinal mixed-methods study describes the clinical and psychosocial challenges faced by HIV perinatally infected young mothers in Harare, Zimbabwe to inform tailored support.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

Differential Responses of Methylobacterium and Sphingomonas Species to Multispecies Interactions in the Phyllosphere.

Environ Microbiol

January 2025

Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.

The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood.

View Article and Find Full Text PDF

Background And Objective: Migrant and refugee women, families, and their children can experience significant language, cultural, and psychosocial barriers to engage with child and family services. Integrated child and family health Hubs are increasingly promoted as a potential solution to address access barriers; however, there is scant literature on how to best implement them with migrant and refugee populations. Our aim was to explore with service providers and consumers the barriers, enablers, and experiences with Hubs and the resulting building blocks required for acceptable Hub implementation for migrant and refugee families.

View Article and Find Full Text PDF

Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!