Background: The fungus Metarhizium brunneum has evolved a remarkable ability to switch between different lifestyles. It develops as a saprophyte, an endophyte establishing mutualistic relationships with plants, or a parasite, enabling its use for the control of insect pests such as the aphid Myzus persicae. We tested our hypothesis that switches between lifestyles must be accompanied by fundamental transcriptional reprogramming, reflecting adaptations to different environmental settings.
Results: We combined high throughput RNA sequencing of M. brunneum in vitro and at different stages of pathogenesis to validate the modulation of genes in the fungus and its host during the course of infection. In agreement with our hypothesis, we observed transcriptional reprogramming in M. brunneum following conidial attachment, germination on the cuticle, and early-stage growth within the host. This involved the upregulation of genes encoding degrading enzymes and gene clusters involved in synthesis of secondary metabolites that act as virulence factors. The transcriptional response of the aphid host included the upregulation of genes potentially involved in antifungal activity, but antifungal peptides were not induced. We also observed the induction of a host flightin gene, which may be involved in wing formation and flight muscle development.
Conclusions: The switch from saprophytic to parasitic development in M. brunneum is accompanied by fundamental transcriptional reprogramming during the course of the infection. The aphid host responds to fungal infection with its own transcriptional reprogramming, reflecting its inability to express antifungal peptides but featuring the induction of genes involved in winged morphs that may enable offspring to avoid the contaminated environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446092 | PMC |
http://dx.doi.org/10.1186/s12864-024-10824-y | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
Background: Undifferentiated embryonic cell transcription factor 1 (UTF1) is predominantly expressed in pluripotent stem cells and plays a vital role in embryonic development and pluripotency maintenance. Despite its established importance in murine models, the role of UTF1 on human induced pluripotent stem cells (iPSCs) has not been comprehensively studied.
Methods: This study utilized CRISPR/Cas9 gene editing to create UTF1 knockout in human fibroblasts and iPSCs.
Alzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Progressive supranuclear palsy (PSP) is the most common primary tauopathy, with a constellation of pathological features including 4R-tau positive neurofibrillary tangles and tufted astrocytes. Most PSP cases are sporadic and associated with common structural variation in the 17q21.31 MAPT locus as well as other loci, including EIF2AK3 which is critical for the integrated stress response (ISR).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Toledo/College of Pharmacy, Toledo, OH, USA.
Background: Primary cilia are solitary membrane-bound organelles emanating from the apical surface of most mammalian cells. They serve as sensory organelles sampling the extracellular environment and reprogramming the transcriptional machinery in response to changes in fluid flow. Ciliopathies, a group of genetic disorders characterized by disrupted cilia structure and/or function, share common phenotypes such as vascular dysfunction and cognitive impairment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Picower Institute, MIT, Cambridge, MA, USA.
Background: The ability to profile gene expression at the single-cell resolution offers the unprecedent opportunity to define the complex cellular heterogeneity of the brain in response to pathology. However, single-cell transcriptomics, particularly within the context of postmortem human brain samples, only provide a static snapshot of the underlying transcriptional mechanisms driving the initiation and progression of diseases.
Method: To gain a more comprehensive picture of disease-associated transcriptional programs, our research integrates single-cell genomics with cellular reprogramming techniques for data-driven mechanistic studies with human-based cellular models of the brain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!