Background: Konjac corms are known for their alkaloid content, which possesses pharmacological properties. In the primary cultivation areas of konjac, nitrogen deficiency is a common problem that significantly influences alkaloid synthesis. The impact of nitrogen deficiency on the alkaloids in konjac corms remains unclear, further complicated by the transition from mother to daughter corms during their growth cycle.
Results: This study examined 21 alkaloids, including eight indole alkaloids, five isoquinoline alkaloids, and eight other types of alkaloids, along with the associated gene expressions throughout the development of Amorphophallus muelleri Blume under varying nitrogen levels. Nitrogen deficiency significantly reduced corm diameter and fresh weight and delayed the transformation process. Under low nitrogen conditions, the content of indole alkaloids and the expression of genes involved in their biosynthesis, such as tryptophan synthase (TRP) and tryptophan decarboxylase (TDC), exhibited a substantial increase in daughter corms, with fold changes of 61.99 and 19.31, respectively. Conversely, in the mother corm, TDC expression was markedly reduced, showing only 0.04 times the expression level observed under 10 N treatment. The patterns of isoquinoline alkaloid accumulation in corms subjected to nitrogen deficiency were notably distinct from those observed for indole alkaloids. The accumulation of isoquinoline alkaloids was significantly higher in mother corms, with expression levels of aspartate aminotransferase (GOT), chorismate mutase (CM), tyrosine aminotransferase (TAT), and pyruvate decarboxylase (PD) being 4.30, 2.89, 921.18, and 191.40 times greater, respectively. Conversely, in daughter corms, the expression levels of GOT and CM in the 0 N treatment were markedly lower (0.01 and 0.83, respectively) compared to the 10 N treatment.
Conclusions: The study suggests that under nitrogen deficiency, daughter corms preferentially convert chorismate into tryptophan to synthesize indole alkaloids, while mother corms convert it into tyrosine, boosting the production of isoquinoline alkaloids. This research provides valuable insights into the mechanisms of alkaloid biosynthesis in A. muelleri and can aid in developing nitrogen fertilization strategies and in the extraction and utilization of alkaloids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448245 | PMC |
http://dx.doi.org/10.1186/s12870-024-05642-z | DOI Listing |
Transl Res
December 2024
Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China.
Renal ischemia-reperfusion injury (IRI) is a prevalent clinical syndrome, yet its underlying pathogenesis remains largely unknown. Aldehyde dehydrogenase 2 (ALDH2), an enzyme responsible for detoxifying lipid aldehydes, has been suggested to play a protective role against IRI. In our study, we observed that Aldh2 knock-out C57BL/6 mice experienced more severe renal functional impairment following IRI.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan. Electronic address:
Serpentine soils are characterized by high concentrations of heavy metals (HMs) and limited essential nutrients with remarkable endemic plant diversity, yet the mechanisms enabling plant adaptation to thrive in such harsh environments remain largely unknown. Full-length 16S rRNA amplicon sequencing, coupled with physiological and functional assays, was used to explore root-associated bacterial community composition and their metabolic and ecological functions. The results revealed that serpentine plant species exhibited significantly higher metal transfer factor values compared to non-serpentine plant species, particularly evident in Bidens pilosa, Miscanthus floridulus, and Leucaena leucocephala.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:
Soil acidification poses a significant threat to agricultural productivity and ecological balance. While lime is a common remedy, it can have limitations, including nutrient deficiencies and potential soil compaction. Therefore, exploring alternative and sustainable amendments is crucial.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Plant Science, Jilin University, Changchun, 130062, China. Electronic address:
Amino acid transporters participate in the transport and distribution of amino acids in plants and are vital for plant growth and development. Despite their importance, few works have investigated the functions of amino acid permeases (AAP) amino acid transporters in soybean. In this study, we re-identified the AAP family genes in soybean using a new public genome database and cloned a soybean AAP gene renamed GmAAP6-like.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India. Electronic address:
In this work, the interaction behaviour of gold nanoparticles (AuNPs) with o-phenylenediamine (OPD) was studied to ascertain the nanozyme-substrate interaction. The UV-Vis absorption, high-resolution transmission electron microscopy and zeta potential analysis revealed that the electron-rich nitrogen atoms in OPD showed a stronger affinity toward electron-deficient surface, indicating a stronger interaction between nanozyme and substrate molecules. Subsequently, under optimum conditions, AuNPs are used as nanozyme to catalyze the oxidation of OPD in the presence of HO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!