This study presents the synthesis and evaluation of a magnetic chitosan-modified biochar (M-BC-CS) composite, developed from waste maize straw, for the efficient removal of copper ions (Cu) and methylene blue (MB) dye from aqueous solutions. The composite was characterized using advanced techniques such as SEM, BET, FTIR, XPS, and XRD, confirming its enhanced surface area, porosity, and magnetic properties. The study is aimed at investigating the optimal conditions for adsorption of Cu and MB by M-BC-CS through analysis of the influence of diverse adsorbent dosages, pH levels, reaction times, and initial solution concentrations. The findings demonstrated that the equilibrium duration for the adsorption of Cu and MB by M-BC-CS was 60 min, resulting in corresponding equilibrium adsorption quantities of 54.42 mg/g and 67.23 mg/g, respectively. To elucidate the adsorption mechanism, the present investigation applied the pseudo-second-order kinetic model and the Langmuir isotherm. The outcomes suggested that the adsorption process is attributable to single molecular layer chemisorption. XPS and FTIR analysis determined that ion exchange and electrostatic interactions are the predominant mechanisms responsible for the simultaneous adsorption of Cu and MB, and a competitive relationship exists between these mechanisms. In addition, M-BC-CS exhibited exceptional magnetic separation performance, enabling effortless and effective separation when exposed to an external magnetic field. Furthermore, the results demonstrated that M-BC-CS has good reusability and high adsorption capacity also in real wastewater, thus emphasizing its potential as a promising adsorbent for the elimination of Cu and MB from aqueous solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35145-1DOI Listing

Publication Analysis

Top Keywords

aqueous solutions
12
removal copper
8
copper ions
8
ions methylene
8
methylene blue
8
blue dye
8
dye aqueous
8
adsorption m-bc-cs
8
adsorption
7
m-bc-cs
5

Similar Publications

Imidazole Cationic-Bridged Pillar[5]arene Polymer as a Recycle Adsorbent for Iodine Capture.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, P. R. China.

Developing efficient and recyclable iodine adsorbents is crucial for addressing radioactive iodine pollution. An imidazole cation-bridged pillar[5]arene polymer (P5-P5I) was synthesized via a salt formation reaction. P5-P5I exhibited a high iodine vapor capture capacity of 2130.

View Article and Find Full Text PDF

Salt-in-presalt electrolyte solutions for high-potential non-aqueous sodium metal batteries.

Nat Nanotechnol

January 2025

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.

Room-temperature non-aqueous sodium metal batteries are viable candidates for cost-effective and safe electrochemical energy storage. However, they show low specific energy and poor cycle life as the use of conventional organic-based non-aqueous electrolyte solutions enables the formation of interphases that cannot prevent degradations at the positive and negative electrodes. Here, to promote the formation of inorganic NaF-rich interphases on both negative and positive electrodes, we propose the salt-in-presalt (SIPS) electrolyte formulation strategy.

View Article and Find Full Text PDF

Studies presenting visible-light-induced desulfurization of peptides containing a cysteine residue have been carried out. This transformation driven by light-emitting-diode-type light proceeds with high efficiency in an aqueous solution at room temperature and involves the use of a catalytic amount of photosensitizer, Rose Bengal. The procedure has been tested on model synthetic peptides, lysozyme C and α-crystallin, and successfully applied to a one-pot native chemical ligation (NCL)-desulfurization protocol.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) removal has gained significant attention due to its environmental stability and potential toxicity. This study aims to synthesize a chitosan-modified magnetic biochar (CS_MBC) for efficient PFOA removal from aqueous solutions. Various CS loading ratios (0.

View Article and Find Full Text PDF

Compared with zero-valent iron, iron sulfide has more diverse reactive species and higher reductivity, but it is still prone to be gradually deactivated due to various passivation factors. In this study, a novel reductive material (BMMW@OA) was prepared by ball milling of mackinawite (MW) as raw material and oxalic acid (OA) as modifier, so as to simultaneously improve its reductivity and stability by continuous releasing reductive species and maintaining freshness of the material surface. The BMMW@OA (w/w of MW/OA = 4/1) effectively removed Cr(Ⅵ) from water with wide pH adaptability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!