Leukemias arise from recurrent clonal mutations in hematopoietic stem/progenitor cells (HSPCs) that cause profound changes in the bone marrow microenvironment (BMM) favoring leukemic stem cell (LSC) growth over normal HSPCs. Understanding the cross talk between preleukemic mutated HSPCs and the BMM is critical to develop novel therapeutic strategies to prevent leukemogenesis. We hypothesize that preleukemic-LSCs (pLSCs) induce BMM changes critical for leukemogenesis. Using our AML-murine model, we performed single-cell RNA-sequencing of preleukemic BMM (pBMM) cells. We found normal HSC (nHSC)-regulating LepR+ mesenchymal stem cells, and endothelial cells were decreased, along with increases in CD55+ fibroblasts and pericytes. Preleukemic CD55+ fibroblasts had higher proliferation rates and decreased collagen expression, suggesting extracellular matrix remodeling during leukemogenesis. Importantly, co-culture assays found preleukemic CD55+ fibroblasts expanded pLSCs significantly over nHSCs. In conclusion, we have identified a distinct pBMM and a novel CD55+ fibroblast population that is expanded in pBMM that promote fitness of pLSCs over nHSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-024-02415-3DOI Listing

Publication Analysis

Top Keywords

cd55+ fibroblasts
12
bone marrow
8
preleukemic cd55+
8
plscs nhscs
8
preleukemic
5
cellular taxonomy
4
taxonomy preleukemic
4
preleukemic bone
4
marrow niche
4
niche acute
4

Similar Publications

N-glycoproteomic and proteomic alterations in SRD5A3-deficient fibroblasts.

Glycobiology

September 2024

Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States.

SRD5A3-CDG is a congenital disorder of glycosylation (CDG) resulting from pathogenic variants in SRD5A3 and follows an autosomal recessive inheritance pattern. The enzyme encoded by SRD5A3, polyprenal reductase, plays a crucial role in synthesizing lipid precursors essential for N-linked glycosylation. Despite insights from functional studies into its enzymatic function, there remains a gap in understanding global changes in patient cells.

View Article and Find Full Text PDF

Cellular taxonomy of the preleukemic bone marrow niche of acute myeloid leukemia.

Leukemia

October 2024

Division of Oncology, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Way, Salt Lake City, UT, 84112, USA.

Leukemias arise from recurrent clonal mutations in hematopoietic stem/progenitor cells (HSPCs) that cause profound changes in the bone marrow microenvironment (BMM) favoring leukemic stem cell (LSC) growth over normal HSPCs. Understanding the cross talk between preleukemic mutated HSPCs and the BMM is critical to develop novel therapeutic strategies to prevent leukemogenesis. We hypothesize that preleukemic-LSCs (pLSCs) induce BMM changes critical for leukemogenesis.

View Article and Find Full Text PDF

Pulsed electromagnetic field stimulation (PEMF) is gaining more attention as a non-invasive arthritis treatment. In our study, immortalized synovial fibroblasts (K4IM) derived from a non-arthritic donor were exposed to MAGCELL ARTHRO, a PEMF device, with 105 mT intensity, 8 Hz frequency, and 2 × 2.5 min sessions conducted thrice with a 1 h interval, to understand the underlying mechanism in regard to the complement system.

View Article and Find Full Text PDF

Fibroblastic reticular cells (FRCs) are a subpopulation of stromal cells modulating the immune environments in health and disease. We have previously shown that activation of TLR9 signaling in FRC in fat-associated lymphoid clusters (FALC) regulate peritoneal immunity via suppressing immune cell recruitment and peritoneal resident macrophage (PRM) retention. However, FRCs are heterogeneous across tissues and organs.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent degenerative joint disorder characterized by cartilage erosion, structural changes, and inflammation. Synovial fibroblasts play a crucial role in OA pathophysiology, with abnormal fibroblastic cells contributing significantly to joint pathology. Fibrocytes, expressing markers of both hematopoietic and stromal cells, are implicated in inflammation and fibrosis, yet their marker and role in OA remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!