Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, for the first time, the optimization of applied pressure for achieving the one of the best tribological properties of diamond-like carbon (DLC) coating on graphite surface using plasma-enhanced chemical vapor deposition (PECVD) method was investigated. Raman spectroscopy and microscopy methods were used to characterize the applied coating. Additionally, the mechanical properties of the coating were investigated through nanoindentation testing. The wear resistance of coating has been tested as functional test. The results indicated that with increasing gas pressure, the sp hybridization percentage decreases, while the I/I ratio increases. The average roughness values for the uncoated sample and the coated samples at working pressures of 25, 30, and 35 mTorr were obtained as 1.6, 5.1, 3, and 2.4 nm, respectively. The results of hardness and wear tests showed that these properties were optimized by reducing the applied gas pressure. The highest hardness was 11.59 GPa, and the best sample in terms of the mechanical properties of the coating was the sample applied at a gas pressure of 25 mTorr. Results show that the optimal sample in tribological performance is the one applied at a working pressure of 25 mTorr. Because this sample demonstrates the lowest coefficient of friction, and wear depth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446935 | PMC |
http://dx.doi.org/10.1038/s41598-024-74038-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!