AI Article Synopsis

  • Fractional quantum Hall (FQH) phases involve strong electronic interactions producing anyonic quasiparticles with unique properties, while integer quantum Hall (IQH) effects arise from the band topology of non-interacting electrons.* -
  • Our research reveals unexpected "super-universality" in the critical behavior of FQH and IQH transitions, where both types exhibit the same critical scaling exponent (κ = 0.41 ± 0.02) and localization length exponent (γ = 2.4 ± 0.2).* -
  • Using ultra-high mobility trilayer graphene devices, we demonstrate that these consistent critical exponents can be observed with short-range disorder, unlike previous studies that showed variability in conventional

Article Abstract

Fractional quantum Hall (FQH) phases emerge due to strong electronic interactions and are characterized by anyonic quasiparticles, each distinguished by unique topological parameters, fractional charge, and statistics. In contrast, the integer quantum Hall (IQH) effects can be understood from the band topology of non-interacting electrons. We report a surprising super-universality of the critical behavior across all FQH and IQH transitions. Contrary to the anticipated state-dependent critical exponents, our findings reveal the same critical scaling exponent κ = 0.41 ± 0.02 and localization length exponent γ = 2.4 ± 0.2 for fractional and integer quantum Hall transitions. From these, we extract the value of the dynamical exponent z ≈ 1. We have achieved this in ultra-high mobility trilayer graphene devices with a metallic screening layer close to the conduction channels. The observation of these global critical exponents across various quantum Hall phase transitions was masked in previous studies by significant sample-to-sample variation in the measured values of κ in conventional semiconductor heterostructures, where long-range correlated disorder dominates. We show that the robust scaling exponents are valid in the limit of short-range disorder correlations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447162PMC
http://dx.doi.org/10.1038/s41467-024-52927-wDOI Listing

Publication Analysis

Top Keywords

quantum hall
20
phase transitions
8
fractional quantum
8
integer quantum
8
critical exponents
8
quantum
5
hall
5
universality quantum
4
quantum phase
4
transitions
4

Similar Publications

Dots and boxes algorithm for Peierls substitution: Application to multidomain topological insulators.

J Phys Condens Matter

December 2024

Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito interior s/n, Colonia Universidad Nacional Autónoma de México, Coyoacán, C.P. 0451 Ciudad Universitaria, Ciudad de México, México, Ciudad de Mexico, 04510, MEXICO.

Magnetic fields can be introduced into discrete models of quantum systems by the Peierls substitution. For tight-binding Hamiltonians, the substitution results in a set of (Peierls) phases that are usually calculated from the magnetic vector potential. As the potential is not unique, a convenient gauge can be chosen to fit the geometry and simplify calculations.

View Article and Find Full Text PDF

Landau Rainbow Induced by Artificial Gauge Fields.

Phys Rev Lett

December 2024

New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong, China.

The ability to generate Landau levels using a pseudomagnetic field (PMF), also called an artificial gauge field, opens up new pathways for exploring fundamental physics and developing novel applications based on topological protection. In this Letter, we simultaneously realize a PMF and a pseudoelectric field (PEF) on a photonic crystal platform and observe a rainbow effect of the Landau zeroth modes. While a PMF induces a series of discretized Landau levels of photons in a similar way as the quantum Hall effect for electrons, a PEF breaks the degeneracy of the flat band of Landau levels over a broad range.

View Article and Find Full Text PDF

Critical Nematic Phase with Pseudogaplike Behavior in Twisted Bilayers.

Phys Rev Lett

December 2024

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA.

The crystallographic restriction theorem constrains two-dimensional nematicity to display either Ising (Z_{2}) or three-state-Potts (Z_{3}) critical behaviors, both of which are dominated by amplitude fluctuations. Here, we use group theory and microscopic modeling to show that this constraint is circumvented in a 30°-twisted hexagonal bilayer due to its emergent quasicrystalline symmetries. We find a critical phase dominated by phase fluctuations of a Z_{6} nematic order parameter and bounded by two Berezinskii-Kosterlitz-Thouless (BKT) transitions, which displays only quasi-long-range nematic order.

View Article and Find Full Text PDF

Among 2-dimensional (2D) non-layered transition-metal chalcogenides (TMCs), cobalt sulfides are highly interesting because of their diverse structural phases and unique properties. The unique magnetic properties of TMCs have generated significant interest in their potential applications in future spintronic devices. In addition, their high conductivity, large specific surface area, and abundant active sites have attracted attention in the field of catalysis.

View Article and Find Full Text PDF

Tunable Topological Transitions Probed by the Quantum Hall Effect in Twisted Double Bilayer Graphene.

Nano Lett

December 2024

State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.

The moiré system provides a tunable platform for investigating exotic quantum phases. Particularly, the displacement field is crucial for tuning the electronic structures and topological properties of twisted double bilayer graphene (TDBG). Here, we present a series of -tunable topological transitions by the evolution of quantum Hall phases (QHPs) in the valence bands of TDBG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!