The parasitic weed Striga (Striga hermonthica) limits productivity of sorghum (Sorghum bicolor) and other cereals in sub-Saharan Africa and elsewhere. Improved host plant genetics is an effective control method but verified loci contributing to Striga resistance are limited. LOW GERMINATION STIMULANT 1 remains the only known sorghum locus affecting resistance to Striga. Functional loss (lgs1) alleles at this locus result in low Striga germination stimulant activity. We developed a robust polymerase chain reaction (PCR)-based LGS1 marker that detects all known natural lgs1 alleles. We have successfully used this marker to improve Striga resistance in our sorghum breeding program. To check its utility among diverse sets of germplasm, we genotyped 406 lines of the sorghum association panel (SAP) with the marker and phenotyped them for Striga germination stimulant activity. The SAP contains 23 lines (6%) with lgs1 mutations that involve a complete loss of this gene. Three previously described deletion alleles (lgs1-1, lgs1-2, and lgs1-3) ranging from 28.5 to 34 kbp are present among SAP members with a new one, lgs1-6, missing nearly 50 kbp relative to the reference genome. All 23 members of the SAP carrying lgs1 alleles had low Striga germination stimulant activity. The smaller previously described intragenic deletion mutations lgs1-4 and lgs1-5 are not present in the SAP. The LGS1 marker is useful for both detecting sources of lgs1 and introgressing Striga resistance into new genetic backgrounds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tpg2.20520DOI Listing

Publication Analysis

Top Keywords

germination stimulant
20
striga resistance
12
lgs1 alleles
12
striga germination
12
stimulant activity
12
striga
9
low germination
8
low striga
8
lgs1 marker
8
lgs1
7

Similar Publications

Proteomics- and metabolomics-based analysis of the regulation of germination in Norway maple and sycamore embryonic axes.

Tree Physiol

January 2025

Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France.

Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively.

View Article and Find Full Text PDF

Plastic pollution, especially pollution by micro- and nanoplastics, is now considered a potential threat to all ecosystems, including terrestrial ecosystems such as grassland habitats. This study investigated the impacts of micro- and nano-sized plastics on Bromus hordeaceus, a common grass species in European grasslands. The micro and nanoparticles were fossil-based polyethylene (PE) or plant-based polybutylene adipate terephthalate (PBAT), and these two plastics were used at two different concentrations.

View Article and Find Full Text PDF

A Novel -Based Nanofertilizer Promotes Seedling Growth and Vigor in Wheat ( L.).

Plants (Basel)

October 2024

Institute of Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), Campus Arrosadia, 31006 Pamplona, Spain.

Excessive use of chemical fertilizers poses significant environmental and health concerns. Microbial-based biofertilizers are increasingly being promoted as safe alternatives. However, they have limitations such as gaining farmers' trust, the need for technical expertise, and the variable performance of microbes in the field.

View Article and Find Full Text PDF

In this study, nineteen thioanhydrides were synthesized from the S-acylation reaction of sodium dithiocarbamates with various acyl chlorides in chloroform at room temperature. The synthesized thioanhydrides were evaluated for their growth-stimulating and phytotoxic activities. Benzoic (1a), 4-methoxy- (1b), 4-chloro- (1c), 2-bromo- (1e), 4-fluoro- (1f.

View Article and Find Full Text PDF

The parasitic weed Striga (Striga hermonthica) limits productivity of sorghum (Sorghum bicolor) and other cereals in sub-Saharan Africa and elsewhere. Improved host plant genetics is an effective control method but verified loci contributing to Striga resistance are limited. LOW GERMINATION STIMULANT 1 remains the only known sorghum locus affecting resistance to Striga.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!