The translation of impedance (R), current (I), and voltage (V) into tissue effects and the understanding of the settings of electrosurgical units is not obvious if judged by the many questions during live surgery. Below 200 V, the current heats the tissue until the steam of boiling stops the current. Thus, slower heating, because of less energy or a larger contact area, results in deeper coagulation. Above 200 V and a duty cycle (per cent of time electricity is delivered) of >50% (yellow pedal), sparks become electric arcs, and the heat causes the explosion of superficial cells, i.e. cutting. With higher voltages, cutting is associated with coagulation, i.e. blended current. With even higher voltages and a duty cycle <10% preventing arching, only coagulation occurs (blue pedal; forced coagulation). Voltage being crucially important for tissue effects, newer electrosurgical units deliver a constant voltage and limit the energy output (Maximal Watts: W=I*V= joules/sec). Unfortunately, the electrosurgical units indicate the combination of voltage and duty cycles as a force of cutting (pure cutting or blended) or coagulation (soft, forced or spray) current. It is important that the surgeon understands whether electrosurgical units control voltages or output, as well as the electrical basics of the different settings and programs used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569438PMC
http://dx.doi.org/10.52054/FVVO.16.3.026DOI Listing

Publication Analysis

Top Keywords

duty cycle
8
higher voltages
8
electrosurgery heating
4
heating sparking
4
sparking electrical
4
electrical arcs
4
arcs translation
4
translation impedance
4
current
4
impedance current
4

Similar Publications

The world is moving towards the utilization of hydrogen vehicle technology because its advantages are uniformity in power production, more efficiency, and high durability when compared to fossil fuels. So, in this work, the Proton Exchange Membrane Fuel Stack (PEMFS) device is selected for producing the energy for the hydrogen vehicle. The merits of this fuel technology are the possibility of operating less source temperature, and more suitability for stationery and transportation applications.

View Article and Find Full Text PDF

Background: Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports.

View Article and Find Full Text PDF

Multiport converters are the most reliable and integral component for latest renewable source integration with multiple inputs. This article is one among the kind, which proposes a novel Coupled Inductor based Four Port topology Multiport Converter (CI-FP-MPC) for integrating multiple PV sources with different voltages. The adoption of coupled inductor contributes an increased voltage gain with reduced stress on the switches and diodes.

View Article and Find Full Text PDF

The corrosion resistance of nickel-titanium nitride (Ni/TiN) composites is significantly influenced by the operation parameters during the jet pulse electrodeposition (JPE) process. The effect of current density, jet rate, TiN concentration, and duty cycle impact on the anti-corrosion property of Ni/TiN composites were investigated and optimized using the response surface method (RSM). After the optimization of the operation parameters, the corrosion current of Ni/TiN composites decreased from 9.

View Article and Find Full Text PDF

Transverse mode instability (TMI) significantly limits the power scaling of ytterbium-doped fiber lasers. In this Letter, what we believe to be a novel TMI mitigation strategy is proposed and demonstrated in a bidirectional output fiber laser. On the basis of the continuous wave (CW) pump, integrating a quasi-continuous wave (QCW) pump can effectively improve the TMI threshold of the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!