Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intracellular calcium dynamics is key to regulating various physiological events. Myotube formation by myoblast fusion is controlled by the release of Ca from the endoplasmic reticulum (ER), and the calpain (CAPN) family is postulated to be an executioner of the process. However, the activation of a specific member of the family or its physiological substrates is unclear. In this study, we explore the involvement of a CAPN in myoblast differentiation. Time-course experiments showed that the reduction in potential substrates of calpains, c-Myc and STAT3 (signal transducer and activator of transcription 3) and generation of STAT3 fragments occurred multiple times at an early stage of myoblast differentiation. Inhibition of the ER Ca release suppressed these phenomena, suggesting that the reduction was dependent on the cleavage by a CAPN. CAPN5 knockdown suppressed the reduction. In vitro reconstitution assay showed Ca- and CAPN5-dependent degradation of c-Myc and STAT3. These results suggest the activation of CAPN5 in differentiating myoblasts. Fusion of the Capn5 knockdown myoblast efficiently occurred; however, the upregulation of muscle-specific proteins (myosin and actinin) was suppressed. Myofibrils were poorly formed in the fused cells with a bulge where nuclei formed a cluster, suggesting that the myonuclear positioning was abnormal. STAT3 was hyperactivated in those fused cells, possibly inhibiting the upregulation of muscle-specific proteins necessary for the maturation of myotubes. These results suggest that the CAPN5 activity is essential in myoblast differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549977 | PMC |
http://dx.doi.org/10.1016/j.jbc.2024.107842 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!