Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microplastics have emerged as a global environmental concern, yet their impact on terrestrial environments, particularly agricultural soils, remains underexplored. Agricultural soils, due to intensive farming, may serve as significant sinks for microplastics. This study investigated the effects of different types of microplastics-polyester microfibers, polyethylene terephthalate microfragments, and polystyrene microspheres-on soil properties and radish growth, while a complementary experiment examined the impact of polyester microfibers on the growth of lettuce and Chinese cabbage. Through both horizontal and vertical comparisons, this research comprehensively evaluated the interactions between microplastic particles and plant species in soil-plant systems. The results showed that polyester microfibers significantly affected soil bulk density, with effects varying based on planting conditions (p < 0.01). Polyethylene terephthalate microfragments and polystyrene microspheres reduced the proportion of small soil macroaggregates under radish cultivation (p < 0.01). Additionally, polystyrene microspheres significantly altered the total organic carbon stock in radish-growing soil, potentially affecting the microclimate (p < 0.01). Interestingly, polyester microfibers promoted lettuce seed germination and significantly enhanced the root biomass of Chinese cabbage (p < 0.05). Overall, the environmental effects of microplastic exposure varied depending on the type of particle and plant species, suggesting that microplastics are not always harmful to soil-plant systems and may even offer benefits in certain scenarios. Given the crucial role of soil-plant systems in terrestrial ecosystems, and their direct connection to food safety, human health, and global change, further research should explore both the positive and negative impacts of microplastics on agricultural practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!