A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stormwater retention performance of tree integrated infiltration trenches designed for suburban streetscapes. | LitMetric

Stormwater retention performance of tree integrated infiltration trenches designed for suburban streetscapes.

Sci Total Environ

School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, 500 Yarra Boulevard, Burnley, VIC 3121, Australia.

Published: December 2024

The volume of stormwater generated by streetscapes in cities is a primary driver of urban stream degradation. Large infiltration trenches can be integrated into streetscapes to potentially retain large volumes of runoff and increase growth rates of nearby trees. To test this, a field study was conducted where three structural soil infiltration trenches receiving runoff (12 m long, 0.6 m wide and 0.6 deep) were installed alongside a carpark in Melbourne, Australia, with sizing determined by space constraints in a typical streetscape. The three structural soil trenches had raised outflow drainage, which created internal water storage for runoff received from a carpark. To separate the effects on tree growth of i) the presence of structural soil from ii) passive irrigation into the structural soil, three structural soil trenches (6 m long, 0.6 m wide and 0.6 deep) not receiving runoff and without outflow drainage were also installed. Runoff capture, exfiltration, outflow and tree growth was monitored over 19 months. Only one system performed close to the design intent and retained 18 % of runoff, due to slow soil exfiltration rates (<0.1 mm h). Compacted soil generated pervious-area runoff that filled the structural soil trenches not receiving impervious-area runoff from the carpark. Tree growth near these structural soil trenches was poor (59 % relative growth) compared with trees receiving runoff from the carpark (112 % relative growth), due to a lack of drainage, emphasising the need for drainage of stormwater systems in heavy textured soils to promote tree growth. This study highlights that options for creating storage for stormwater in streetscapes have the potential to meet local runoff infiltration targets. However, meeting local runoff volume reduction targets will require alternative ways to reduce surface runoff.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176634DOI Listing

Publication Analysis

Top Keywords

structural soil
20
infiltration trenches
12
three structural
12
receiving runoff
8
long 06 m
8
06 m wide
8
wide deep
8
soil trenches
8
outflow drainage
8
tree growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!