Tragacanth gum hydrogels with cellulose nanocrystals: A study on optimizing properties and printability.

Int J Biol Macromol

Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland. Electronic address:

Published: November 2024

This study investigates a novel all-polysaccharide hydrogel composed of tragacanth gum (TG) and cellulose nanocrystals (CNCs), eliminating the need for toxic crosslinkers. Designed for potential tissue engineering applications, these hydrogels were fabricated using 3D printing and freeze-drying techniques to create scaffolds with interconnected macropores, facilitating nutrient transport. SEM images revealed that the hydrogels contained macropores with a diameter of 100-115 μm. Notably, increasing the CNC content within the TG matrix (30-50 %) resulted in a decrease in porosity from 83 % to 76 %, attributed to enhanced polymer-nanocrystal interactions that produced denser networks. Despite the reduced porosity, the hydrogels demonstrated high swelling ratios (890-1090 %) due to the high water binding capacity of the hydrogel. Mechanical testing showed that higher CNC concentrations significantly improved compressive strength (27.7-49.5 kPa) and toughness (362-707 kJ/m), highlighting the enhanced mechanical properties of the hydrogels. Thermal analysis confirmed stability up to 400 °C and verified ionic crosslinking with CaCl₂. Additionally, hemolysis tests indicated minimal hemolytic activity, affirming the biocompatibility of the TG/CNC hydrogels. These findings highlight the potential of these hydrogels as advanced materials for 3D-printed scaffolds and injectable hydrogels, offering customizable porosity, superior mechanical strength, thermal stability, and biocompatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136182DOI Listing

Publication Analysis

Top Keywords

tragacanth gum
8
hydrogels
8
cellulose nanocrystals
8
gum hydrogels
4
hydrogels cellulose
4
nanocrystals study
4
study optimizing
4
optimizing properties
4
properties printability
4
printability study
4

Similar Publications

A bright future lies ahead for the application of natural biocomposites in the food industry. In this research, edible biocomposite films were created using sodium caseinate (SC)-gum tragacanth (GT) and incorporating carum carvi seed essential oil (EO) as a nanoemulsion. Different ratios of oil were used as variables.

View Article and Find Full Text PDF

Fire blight, caused by Erwinia amylovora, is a significant threat to fruit crops, with limited biocontrol methods. This study aimed to develop a nanosystem using mesoporous silica nanoparticles (MSNs) loaded with a phenolic plant extract (ZP) derived from Myrtus communis, Thymus vulgaris, and Curcuma longa, and coated with natural biopolymers Gum Tragacanth (GT) and sodium alginate (SA). The MSNs were synthesized and characterized by XRD, FTIR, and TEM, exhibiting a specific surface area of about 750 m/g and an average pore diameter of 5 nm.

View Article and Find Full Text PDF

Effectiveness of different gums on modulating of glycemic indices in adults: a systematic review and meta-analysis.

J Diabetes Metab Disord

June 2025

Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.

Background: Functional foods have been widely used as the anti-diabetic agents worldwide. Existing studies presented conflicting results of anti-hyperglycemic properties of gums. This systematic review and meta-analysis study evaluated the existing trials and determined the efficacy of different gums on glycemic indices.

View Article and Find Full Text PDF
Article Synopsis
  • This study analyzes how different substitutes (like maltodextrin and various gums) affect the stability of seed film-coatings that currently contain microplastics.
  • Results show that using these substitutes increases the number of particles moving from the supernatant but decreases their settling rate and the thickness of that supernatant.
  • The study introduces a new measurement called redispersion capacity, indicating how well the particles in the coating can be re-dispersed, which varies based on the specific substitute and thickener used.
View Article and Find Full Text PDF

In this study we have developed, characterized and examined the healing and regenerative potential of gum tragacanth based zinc oxide composite hydrogel (ZnO-GT). ZnO-GT composite is a pliable and soft formulation offering efficient, faster and improved burn wound healing/managements. In this procedure, we generated partial thickness burn wounds in murine model and then applied the wound with ZnO-GT formulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!