This study investigates a novel all-polysaccharide hydrogel composed of tragacanth gum (TG) and cellulose nanocrystals (CNCs), eliminating the need for toxic crosslinkers. Designed for potential tissue engineering applications, these hydrogels were fabricated using 3D printing and freeze-drying techniques to create scaffolds with interconnected macropores, facilitating nutrient transport. SEM images revealed that the hydrogels contained macropores with a diameter of 100-115 μm. Notably, increasing the CNC content within the TG matrix (30-50 %) resulted in a decrease in porosity from 83 % to 76 %, attributed to enhanced polymer-nanocrystal interactions that produced denser networks. Despite the reduced porosity, the hydrogels demonstrated high swelling ratios (890-1090 %) due to the high water binding capacity of the hydrogel. Mechanical testing showed that higher CNC concentrations significantly improved compressive strength (27.7-49.5 kPa) and toughness (362-707 kJ/m), highlighting the enhanced mechanical properties of the hydrogels. Thermal analysis confirmed stability up to 400 °C and verified ionic crosslinking with CaCl₂. Additionally, hemolysis tests indicated minimal hemolytic activity, affirming the biocompatibility of the TG/CNC hydrogels. These findings highlight the potential of these hydrogels as advanced materials for 3D-printed scaffolds and injectable hydrogels, offering customizable porosity, superior mechanical strength, thermal stability, and biocompatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136182 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran.
A bright future lies ahead for the application of natural biocomposites in the food industry. In this research, edible biocomposite films were created using sodium caseinate (SC)-gum tragacanth (GT) and incorporating carum carvi seed essential oil (EO) as a nanoemulsion. Different ratios of oil were used as variables.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran. Electronic address:
Fire blight, caused by Erwinia amylovora, is a significant threat to fruit crops, with limited biocontrol methods. This study aimed to develop a nanosystem using mesoporous silica nanoparticles (MSNs) loaded with a phenolic plant extract (ZP) derived from Myrtus communis, Thymus vulgaris, and Curcuma longa, and coated with natural biopolymers Gum Tragacanth (GT) and sodium alginate (SA). The MSNs were synthesized and characterized by XRD, FTIR, and TEM, exhibiting a specific surface area of about 750 m/g and an average pore diameter of 5 nm.
View Article and Find Full Text PDFJ Diabetes Metab Disord
June 2025
Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
Background: Functional foods have been widely used as the anti-diabetic agents worldwide. Existing studies presented conflicting results of anti-hyperglycemic properties of gums. This systematic review and meta-analysis study evaluated the existing trials and determined the efficacy of different gums on glycemic indices.
View Article and Find Full Text PDFMolecules
December 2024
Laboratoire de Chimie Agro-Industrielle (LCA), INRAE, Toulouse INP, Université de Toulouse, 31030 Toulouse, France.
In this study we have developed, characterized and examined the healing and regenerative potential of gum tragacanth based zinc oxide composite hydrogel (ZnO-GT). ZnO-GT composite is a pliable and soft formulation offering efficient, faster and improved burn wound healing/managements. In this procedure, we generated partial thickness burn wounds in murine model and then applied the wound with ZnO-GT formulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!