A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fe (hydr)oxides and organic colloids mediate colloid-bound chromium mobilization in Cr(VI) contaminated paddy soil. | LitMetric

Fe (hydr)oxides and organic colloids mediate colloid-bound chromium mobilization in Cr(VI) contaminated paddy soil.

Environ Pollut

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.

Published: December 2024

AI Article Synopsis

  • The study looked at how chromium particles in contaminated soil affect the growth of rice plants and how much chromium the rice absorbs.
  • Researchers found that a significant amount of chromium was attached to tiny particles in the soil, which helped move it around.
  • They discovered that the presence of certain materials and conditions in the soil influenced how much chromium ended up in the rice grains, showing how important these factors are in understanding pollution in paddy fields.

Article Abstract

The association of chromium (Cr) with colloidal particles transport in contaminated sites can affect hexavalent chromium (Cr(VI)) migration and transformation, which is an important mechanism for Cr pollutants in soil and groundwater systems. Here, we investigated colloid and particle-bound Cr migration and transformation effects on rice Cr accumulation during different rice growth stages and different redox conditions in Cr(VI) contaminated soil by pot experiment. Results showed that 13-29% of soil Cr was water dispersible colloid-bound (100-1000 nm) form during rice growth. Using transmission electron microscopy - energy dispersion spectroscopy and asymmetric flow field - flow separation, we identified colloid-bound organic matter (OM) and iron (Fe), most likely in the form of Fe (hydr)oxides - clay composites, as the primary Cr carrier. Specifically, colloid-bound Cr was mainly associated with 125-350 nm soil particle size. Under different redox conditions, colloid- and nanoparticle-bound Cr concentration decreased with increasing nanoparticles zero-valent iron (nZVI) dose. Soil reoxidation promoted the colloid- and nanoparticle-bound Cr release due to the weakly crystalline Fe-(hydr)oxides reprecipitation. Further quantitative analysis showed that colloid-bound Cr concentrations were positively correlated with colloid-bound Mn concentrations during the whole rice growth soils. Most important of all, Cr content in rice grain was positively correlated with colloid-bound Cr significantly. This study provides a quantitative and size-resolved understanding of particle-bound Cr in paddy soils, highlighting the importance of colloid-bound Cr and Fe interactions in Cr geochemical cycle of paddy soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.125045DOI Listing

Publication Analysis

Top Keywords

rice growth
12
colloid-bound
8
crvi contaminated
8
paddy soil
8
migration transformation
8
redox conditions
8
colloid- nanoparticle-bound
8
colloid-bound concentrations
8
positively correlated
8
correlated colloid-bound
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!