Seeking highly efficient adsorbents for pharmaceuticals and personal care products (PPCPs) removal has been a worldwide continuing endeavor. In this study, a new 3D composite material was synthesized by covalently anchoring Poly(m-Phenylenediamine) onto 3D polyvinyl alcohol modified foam framework (PmPD-MF-PVA). PmPD-MF-PVA was characterized and evaluated for its efficacy in removing diclofenac (DCF), a commonly detected PPCPs in both wastewater and surface water. Results showed that the adsorption capacity of PmPD-MF-PVA toward DCF was 1.5 times higher than that of PmPD-MF. The addition of PVA increased deposition area of PmPD, and promoted PmPD loading on the foam surface. Batch adsorption experiments exhibited that the adsorption of DCF was fitted well with Langmuir isotherm and pseudo-second-order kinetic models. The maximum adsorption capacity of PmPD-MF-PVA was 115 mg/g. Meanwhile, PmPD-MF-PVA exhibited better separation ability than the hard-to-separate PmPD. Characterization analysis and density functional theory (DFT) calculation elucidated the main mechanisms of DCF adsorption on PmPD-MF-PVA. Hydrogen bonding and π-π interactions were main drivers for DCF adsorption, followed by electrostatic attraction and hydrophobic forces. This study provides an effective strategy to overcome the drawbacks of PmPD, such as recycling difficulty and agglomeration problems, offering valuable insights for the design of polymers-based adsorbents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122556DOI Listing

Publication Analysis

Top Keywords

adsorption capacity
8
capacity pmpd-mf-pva
8
dcf adsorption
8
adsorption
7
pmpd-mf-pva
6
dcf
5
performance mechanism
4
mechanism diclofenac
4
diclofenac adsorption
4
adsorption polym-phenylenediamine-grafted
4

Similar Publications

Evaporation-Induced Reticular Growth of UiO-66_NH in Chitosan Films: Adsorption of Iodine.

ACS Appl Mater Interfaces

January 2025

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.

Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.

View Article and Find Full Text PDF

This study explores the enhanced adsorption performance of activated carbon felt (ACF) for Cu(II) and Cd(II) ions, achieved using a dual-synergistic approach combining MnO coating and plasma treatment. ACF's intrinsic properties, including a high surface area (~ 1000-2000 m²/g), large porosity, and excellent mechanical stability, make it a promising material for environmental applications. However, its limited surface functional groups hinder its adsorption efficiency for heavy metals.

View Article and Find Full Text PDF

Synergistic Remediation of Cadmium Pollution in Saline-Alkali Soil by Hydrogel and .

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.

The cadmium (Cd) in saline-alkali soil poses a serious threat to the ecological environment and human health. , as a hyperaccumulator plant, can remediate Cd in saline-alkali soil, but the efficiency of phytoremediation is low. To improve the remediation effect of Cd pollution in saline-alkali soil, this study for the first time uses the synergy of hydrogel and for the remediation of Cd in saline-alkali soil.

View Article and Find Full Text PDF

In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.

View Article and Find Full Text PDF

Bismuth-based photocatalysts proved to have remarkable photoactivity for antibiotic degradation from water. However, the two significant challenges of bismuth-based photocatalysts are the fast charge recombination rate and higher energy band gap. This study successfully synthesized a novel I-Bi/BiWO/MWCNTs (C-WBI) heterostructure composite photocatalysts with shorter energy band-gap and higher charge production capability through interfacial amidation linkage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!