The prevalence and spread of antibiotic resistance genes (ARGs) have been a significant concern for global public health in recent years. Small rural watersheds are the smallest units of factor mobility for agricultural production in China, and their ARG profiles are the best scale of the contamination status, but the mapping and the distribution and diffusion of ARGs in the water and soil of small rural watersheds are inadequate. In this study, based on microbial metagenomics, we invested prevalence maps of 209 ARGs corresponding to typical commonly used antibiotics (including multidrug, aminoglycoside, macrolide-lincosamide-streptogramin B (MLSB), and β-Lactamase) in water and soil in different agricultural types, as well as within water-soil interfaces in small rural watersheds in Southwest China. The results revealed that the most abundant ARGs in water and soil were consistent, but different in subtypes, and anthropogenic activities affect the transport of ARGs between water and soils. Livestock wastewater discharges influenced the diversity and abundance of ARGs in water, while in soil it is planting type and fertilizer management, and thus interfered with the co-occurrence patterns between bacteria and ARGs. Co-occurrence analysis revealed that Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant ARG hosts in water and soil, but soil exhibited a more intricate ARG-bacterial association. Overall, this study provides integrated profiles of ARGs in water and soil influenced by anthropogenic activities at the small watershed scale in a typical rural area and provides a baseline for comparisons of ARGs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.117118 | DOI Listing |
Am J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
Sci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFSci Rep
January 2025
School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
The film water, with an exceptional capacity to maintain a premelting, liquid-like state even under subzero conditions, provides a potential dynamic conduit for the movement of water in frozen soils. However, the distinctive structural and dynamic characteristics of film water have not been comprehensively elucidated. In this study, molecular dynamics (MD) simulations were conducted to examine the freezing of a system containing ice, water, silica, and gas.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China.
With the advancement of ecological and environmental protection construction, the research on the modification of expansive soil using environmentally friendly polymers can make up for the harm to the ecological environment caused by traditional modification. Mechanical and microscopic properties of modified expansive soils were analyzed through indoor tests. The results showed that the liquid limit and plasticity index decreased by 52.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
Accidental ingestion of lead (Pb)-contaminated soils represents a major route of Pb exposure for both adults and children, and the development of accessible and cost-effective solutions to reduce Pb poisoning is urgently required. Here, we present an effective and straightforward technique, involving the consumption of cola beverages, for the purpose of lowering blood Pb levels following the ingestion of contaminated soils in animal models. This method facilitated the direct passage of Pb in contaminated soil through the digestive system, enhancing its elimination without absorption into systemic circulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!