Benzethonium chloride (BZC) and methylparaben (MeP) are commonly added into cosmetics as preservatives, which are frequently detected in wastewater treatment plants. Different response patterns of denitrification system were proposed under single and combined exposure to BZC and MeP (0, 0.5, 5 mg/L) by evaluating system performance, functional genes, extracellular polymeric substance (EPS), cytotoxicity, microbial community structure and resistance genes (RGs). The inhibition effect of BZC on denitrification system was stronger than MeP, and the co-exposure of BZC and MeP showed synergistic effect, enhancing the inhibition effect of BZC single exposure. BZC and/or MeP could promote the diffusion of RGs in sludge, including intracellular RGs (si-RGs) and extracellular RGs (se-RGs). Moreover, the single exposure of BZC and co-exposure of BZC and MeP increased the dissemination risks of RGs in water (w-RGs). IntI1 and tnpA-04, mobile genetic elements (MGEs), correlated positively with diverse RGs from different fractions. Notably, the spread of RGs through horizontal gene transfer mediated by MGEs and the flow of si-RGs into extracellular and water were observed in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136010 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:
The microalgal-bacterial consortium (MBC) system is recognized as an advanced approach for nitrogen and phosphorus removal in wastewater treatment. However, the influence of microalgae on bacterial community dynamics and niche differentiation across varying seasonal conditions remains unexplored. In this study, we established a pilot-scale continuous-flow MBC system to disentangle, for the first time, the impact of microalgae on seasonal bacterial community succession by conducting monthly time-series sampling over a full seasonal cycle.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
Ibuprofen (IBU), a commonly used non-steroidal anti-inflammatory drug, is frequently detected in wastewater treatment systems, where it can interfere with nitrogen removal. This study investigated the effects of IBU on nitrogen removal performance and its biotransformation in a coupled sulfur autotrophic denitrification and anammox (SAD/A) system. Moreover, key parameters, such as nitrogen removal efficiency, microbial activity, community structure, and IBU degradation products, were carefully monitored.
View Article and Find Full Text PDFBioresour Technol
January 2025
National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:
There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.
View Article and Find Full Text PDFiScience
January 2025
Electrical Engineering College, Guizhou University, Guiyang 550025, China.
Analyzing the uniformity of ammonia distribution at the inlet of selective catalytic reduction reactors is crucial for enhancing denitrification efficiency. To minimize ammonia slip while ensuring effective denitrification, this study examines ammonia flow characteristics in the SCR system under various zoning schemes. In scheme I, zones A1, A2, A3, and A4 predominantly influence the left, center, center-right, and far-right regions of the reactor inlet.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!