Identification of nitrile-containing isoquinoline-related natural product derivatives as coronavirus entry inhibitors in silico and in vitro.

Biomed Pharmacother

Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany. Electronic address:

Published: November 2024

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since its emergence in Wuhan, China, in late 2019. Natural product inhibitors targeting the interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and human angiotensin-converting enzyme 2 (ACE2), crucial for viral attachment and cellular entry, are of significant interest as potential antiviral agents. In this study a library of nitrile- and sulfur-containing natural product derived compounds were used for virtual drug screening against the RBD of the SARS-CoV-2 spike protein. The top 18 compounds from docking were tested for their efficacy to inhibit virus entry. In vitro experiments revealed that compounds 9, 14, and 15 inhibited SARS-CoV-2 pseudovirus and live virus entry in HEK-ACE2 and Vero E6 host cells at low micromolar IC values. Cell viability assays showed these compounds exerted low cytotoxicity towards MRC5, Vero E6, and HEK-ACE2 cell lines. Microscale thermophoresis revealed all three compounds strongly bound to the RBDs of SARS-CoV-2, SARS-CoV-2 XBB, SARS-CoV-1, MERS-CoV, and HCoV-HKU1, with their K values increasing as RBD sequence similarity decreased. Molecular docking studies indicated compounds 9, 14, and 15 bound to the SARS-CoV-2 spike protein RBD and interacted with hotspot amino acid residues required for the RBD-ACE2 interaction and cellular infection. These three nitrile-containing candidates, particularly compound 15, should be considered for further development as potential pan-coronavirus entry inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117517DOI Listing

Publication Analysis

Top Keywords

natural product
12
sars-cov-2 spike
12
spike protein
12
entry inhibitors
8
rbd sars-cov-2
8
virus entry
8
compounds bound
8
sars-cov-2
7
compounds
6
entry
5

Similar Publications

Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.

View Article and Find Full Text PDF

The biopharmaceutical industry has witnessed significant growth in the development and approval of biosimilars. These biosimilars aim to provide cost-effective alternatives to expensive originator biosimilars, alleviating financial pressures within healthcare. The manufacturing of biosimilars is a highly complex process that involves several stages, each of which must meet strict regulatory standards to ensure that the final product is highly similar to the reference biologic.

View Article and Find Full Text PDF

The jute hairy caterpillar, Spilosoma obliqua (Lepidoptera: Erebidae) is considered as one of the major threats to jute cultivation. The best eco-friendly methods to combat these jute pests involve administration of nano-biopesticides, as a successful alternative to the toxic chemicals. In this study, a nano-biopesticide formulation containing green synthesized silver nanoparticles (Ag NPs) using Ocimum sanctum leaf extract has been proposed.

View Article and Find Full Text PDF

Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the need for an effective vaccine has appeared crucial for stimulating immune system responses to produce humoral/cellular immunity and activate immunological memory. It has been demonstrated that SARS-CoV-2 variants escape neutralizing immunity elicited by previous infection and/or vaccination, leading to new infection waves and cases of reinfection. The study aims to gain into cases of reinfections, particularly infections and/or vaccination-induced protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!