Structural modulation of NaFe(PO)PO via cation engineering towards high-rate and long-cycling sodium-ion batteries.

J Colloid Interface Sci

School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China. Electronic address:

Published: February 2025

AI Article Synopsis

  • * Cd doping in NFPP (resulting in NFCPP) stabilizes its crystal structure and improves electron conductivity, leading to better electrochemical performance.
  • * The optimized NFCPP@3% delivers impressive results, including a capacity of 62 mAh/g at high rates and 91% retention after 200 cycles, highlighting the effectiveness of doping in improving battery technology.

Article Abstract

Mixed iron-based phosphate NaFe(PO)PO/C (NFPP) has gradually emerged as a promising cathode material for sodium-ion batteries (SIBs) owing to its affordability and convenient preparation. However, poor electrical conductivity and inadequate sodium-ion diffusion limit the exertion of its electrochemical properties. Herein, a structural modulation strategy based on Cd doping is applied to NFPP to address the above limitations. In situ X-ray diffraction analysis reveals that Cd-doped NFPP (NFCPP) undergoes an incomplete solid-solution reaction driven by Fe/Fe redox. Cd doping effectively stabilises the crystal structure, resulting in a minimal 1 % change in unit cell volume during cycling. Density of state calculations indicate that Cd doping reduces the band gap, increases the local electron density and significantly improves electron conductivity. Benefitting from the enhanced electrochemical kinetics and intercalation pseudocapacitance, the optimised NaFeCd(PO)PO/C (NFCPP@3%) exhibits exceptional rate performance (capacity of 62 mAh/g at 20 C) and ultra-long cycling life (82.7 % after 6000 cycles at 20 C). A full SIB prepared using NFCPP@3% and hard carbon, display a 91 % capacity retention rate at a current density of 130 mA g over 200 cycles. This work demonstrates that doping can effectively enhance electrochemical performance and offers insights into future development of SIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.09.206DOI Listing

Publication Analysis

Top Keywords

structural modulation
8
sodium-ion batteries
8
doping effectively
8
modulation nafepopo
4
nafepopo cation
4
cation engineering
4
engineering high-rate
4
high-rate long-cycling
4
long-cycling sodium-ion
4
batteries mixed
4

Similar Publications

Tuning the Selectivity in the Nonoxidative Alkane Dehydrogenation Reaction by Potassium-Promoted Zeolite-Encapsulated Pt Catalysts.

JACS Au

December 2024

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.

The significance of the nonoxidative dehydrogenation of middle-chain alkanes into corresponding alkenes is increasing in the context of the world's declining demands on transportation fuels and the growing demand for chemicals and materials. The middle-chain alkenes derived from the dehydrogenation reaction can be transformed into value-added chemicals in downstream processes. Due to the presence of multiple potential reaction sites, the reaction mechanism of the dehydrogenation of middle-chain alkanes is more complicated than that in the dehydrogenation of light alkanes, and there are few prior studies on elucidating their detailed structure-reactivity relationship.

View Article and Find Full Text PDF

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.

View Article and Find Full Text PDF

Background: As a novel blocker of vascular endothelial growth factor receptor (VEGFR), fruquintinib has been approved for treating colorectal cancer (CRC). However, its dosage and therapeutic efficacy are limited by its widespread adverse reactions. Venetoclax, recognized as the initial inhibitor of B-cell lymphoma protein 2 (BCL2), has shown potential in boosting the effectiveness of immunotherapy against CRC.

View Article and Find Full Text PDF

A fine-grained understanding of dynamics in cortical networks is crucial to unpacking brain function. Resting-state functional magnetic resonance imaging (fMRI) gives rise to time series recordings of the activity of different brain regions, which are aperiodic and lack a base frequency. Cyclicity analysis, a novel technique robust under time reparametrizations, is effective in recovering the temporal ordering of such time series, collectively considered components of a multidimensional trajectory.

View Article and Find Full Text PDF

Tumor immunotherapy, modulating innate and adaptive immunity, has become an important therapeutic strategy. However, the tumor immune microenvironment's (TIME) complexity and heterogeneity challenge tumor immunotherapy. Hydrogel is a hydrophilic three-dimensional (3D) mesh structure with good biocompatibility and drug release control, which is widely used in drug delivery, agriculture, industry, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!