This study focuses on the use of a neural mass model to investigate potential relationships between functional connectivity and seizure frequency in epilepsy. We fitted a three-layer neural mass model of a cortical column to intracranial EEG (iEEG) data from a Tetanus Toxin rat model of epilepsy, which also included responses to periodic electrical stimulation. Our results show that some of the connectivity weights between different neural populations correlate significantly with the number of seizures each day, offering valuable insights into the dynamics of neural circuits during epileptogenesis. We also simulated single-pulse electrical stimulation of the neuronal populations to observe their responses after the connectivity weights were optimized to fit background (non-seizure) EEG data. The recovery time, defined as the time from stimulation until the membrane potential returns to baseline, was measured as a representation of the critical slowing down phenomenon observed in nonlinear systems operating near a bifurcation boundary. The results revealed that recovery times in the responses of the computational model fitted to the EEG data were longer during 5 min periods preceding seizures compared to 1 hr before seizures in four out of six rats. Analysis of the iEEG recorded in response to electrical stimulation revealed results similar to the computational model in four out of six rats. This study supports the potential use of this computational model as a model-based biomarker for seizure prediction when direct electrical stimulation to the brain is not feasible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106746 | DOI Listing |
Alzheimers Dement
December 2024
Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, USA.
Background: Alzheimer's disease (AD) affects over 55 million people worldwide and is characterized by abnormal deposition of amyloid-β and tau in the brain causing neuronal damage and disrupting transmission within brain circuits. Episodic memory loss, executive deficits, and depression are common symptoms arising from altered function in spatially distinct brain circuits that greatly contribute to disability. Transcranial electrical stimulation (tES) can target these circuits and has shown promise to relieve specific symptoms.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yuan Ze University, Taoyuan CIty, Taoyuan, Taiwan.
Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yuan Ze University, Taoyuan CIty, Taoyuan, Taiwan.
Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.
View Article and Find Full Text PDFInt J Clin Pediatr Dent
November 2024
Private Practitioner, Gujarat, India.
Background: When it comes to reducing children's fear, anxiety, and discomfort during dental procedures, substantial local anesthetic delivery promotes adequate intervention. In the dental operatory, local anesthetic injections are the most anticipated or feared stimuli. The application of topical anesthetics, cryotherapy, and transcutaneous electrical nerve stimulation (TENS) to the oral mucosa prior to local anesthetic injections can alter pain perception in children.
View Article and Find Full Text PDFNpj Flex Electron
October 2024
Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
The integration of flexible electronics and photonics has the potential to create revolutionary technologies, yet it has been challenging to marry electronic and photonic components on a single polymer device, especially through high-volume manufacturing. Here, we present a robust, chiplet-level heterogeneous integration of polymer-based circuits (CHIP), where several post-fabricated, ultrathin, polymer electronic, and optoelectronic chiplets are vertically bonded into one single chip at room temperature and then shaped into application-specific form factors with monolithic Input/Output (I/O). As a demonstration, we applied this process and developed a flexible 3D-integrated optrode with high-density arrays of microelectrodes for electrical recording and micro light-emitting diodes (μLEDs) for optogenetic stimulation while with unprecedented integration of additional temperature sensors for bio-safe operations and shielding designs for optoelectronic artifact prevention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!