A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multimodal brain tumor segmentation and classification from MRI scans based on optimized DeepLabV3+ and interpreted networks information fusion empowered with explainable AI. | LitMetric

Explainable artificial intelligence (XAI) aims to offer machine learning (ML) methods that enable people to comprehend, properly trust, and create more explainable models. In medical imaging, XAI has been adopted to interpret deep learning black box models to demonstrate the trustworthiness of machine decisions and predictions. In this work, we proposed a deep learning and explainable AI-based framework for segmenting and classifying brain tumors. The proposed framework consists of two parts. The first part, encoder-decoder-based DeepLabv3+ architecture, is implemented with Bayesian Optimization (BO) based hyperparameter initialization. The different scales are performed, and features are extracted through the Atrous Spatial Pyramid Pooling (ASPP) technique. The extracted features are passed to the output layer for tumor segmentation. In the second part of the proposed framework, two customized models have been proposed named Inverted Residual Bottleneck 96 layers (IRB-96) and Inverted Residual Bottleneck Self-Attention (IRB-Self). Both models are trained on the selected brain tumor datasets and extracted features from the global average pooling and self-attention layers. Features are fused using a serial approach, and classification is performed. The BO-based hyperparameters optimization of the neural network classifiers is performed and the classification results have been optimized. An XAI method named LIME is implemented to check the interpretability of the proposed models. The experimental process of the proposed framework was performed on the Figshare dataset, and an average segmentation accuracy of 92.68 % and classification accuracy of 95.42 % were obtained, respectively. Compared with state-of-the-art techniques, the proposed framework shows improved accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.109183DOI Listing

Publication Analysis

Top Keywords

proposed framework
16
brain tumor
8
tumor segmentation
8
deep learning
8
extracted features
8
inverted residual
8
residual bottleneck
8
proposed
7
models
5
framework
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!