Humidity Sensing Properties of Different Atomic Layers of Graphene on the SiO/Si Substrate.

ACS Appl Mater Interfaces

Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.

Published: October 2024

AI Article Synopsis

  • Graphene's high surface area and conductivity make it a promising material for humidity sensors, but its performance with different atomic layers on a SiO/Si substrate hasn't been thoroughly investigated.
  • The study involved creating humidity sensors with one to three atomic layers of graphene and assessing their sensing efficiency based on layers and sensing area sizes.
  • Results showed that the relative resistance change decreased with more atomic layers, with tri-layer graphene offering the best response/recovery times, while double-layer graphene was chosen for tasks like respiration and contact-free finger monitoring due to its balance of responsivity and stability.

Article Abstract

Graphene has great potential to be used for humidity sensing due to its ultrahigh surface area and conductivity. However, the impact of different atomic layers of graphene on the SiO/Si substrate on humidity sensing has not been studied yet. In this paper, we fabricated three types of humidity sensors on the SiO/Si substrate based on one to three atomic layers of graphene, in which the sensing areas of graphene are 75 μm × 72 μm and 45 μm × 72 μm, respectively. We studied the impact of both the number of atomic layers of graphene and the sensing areas of graphene on the responsivity and response/recovery time of the prepared graphene-based humidity sensors. We found that the relative resistance change of the prepared devices decreased with the increase of number of atomic layers of graphene under the same change of relative humidity. Further, devices based on tri-layer graphene showed the fastest response/recovery time, while devices based on double-layer graphene showed the slowest response/recovery time. Finally, we chose devices based on double-layer graphene that have relatively good responsivity and stability for application in respiration monitoring and contact-free finger monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c11194DOI Listing

Publication Analysis

Top Keywords

atomic layers
20
layers graphene
20
humidity sensing
12
sio/si substrate
12
μm μm
12
response/recovery time
12
devices based
12
graphene
11
graphene sio/si
8
humidity sensors
8

Similar Publications

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.

View Article and Find Full Text PDF

Nonlinear coupling of closely spaced modes in atomically thin MoS nanoelectromechanical resonators.

Microsyst Nanoeng

December 2024

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.

Nanoelectromechanical systems (NEMS) incorporating atomic or molecular layer van der Waals materials can support multimode resonances and exotic nonlinear dynamics. Here we investigate nonlinear coupling of closely spaced modes in a bilayer (2L) molybdenum disulfide (MoS) nanoelectromechanical resonator. We model the response from a drumhead resonator using equations of two resonant modes with a dispersive coupling term to describe the vibration induced frequency shifts that result from the induced change in tension.

View Article and Find Full Text PDF

Buried interface engineering towards stable zinc anodes for high-performance aqueous zinc-ion batteries.

Sci Bull (Beijing)

December 2024

School of Metallurgy and Environment, Central South University, Changsha 410083, China; Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China; National Energy Metal Resources and New Materials Key Laboratory, Central South University, Changsha 410083, China. Electronic address:

The dendrite and corrosion issues still remain for zinc anodes. Interface modification of anodes has been widely used for stabilizing zinc anodes. However, it is still quite challenging for such modification to simultaneously suppress zinc dendrites and corrosion issues.

View Article and Find Full Text PDF

Deciphering Surface-Localized Structure of Nanodiamonds.

Nanomaterials (Basel)

December 2024

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.

Nanomaterials, heralded as the "new materials of the 21st century" for their remarkable physical and chemical properties and broad application potential, have attracted substantial attention in recent years. Among these materials, which challenge traditional physical boundaries, nanodiamonds (NDs) are widely applied across diverse industries due to their exceptional surface multifunctionality and chemical stability. Nevertheless, atomic-level manipulation of NDs presents considerable challenges, which require detailed structural analysis to thoroughly elucidate their properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!