A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting adherence to gamified cognitive training using early phase game performance data: Towards a just-in-time adherence promotion strategy. | LitMetric

Background And Objectives: This study aims to develop a machine learning-based approach to predict adherence to gamified cognitive training using a variety of baseline measures (demographic, attitudinal, and cognitive abilities) as well as game performance data. We aimed to: (1) identify the cognitive games with the strongest adherence prediction and their key performance indicators; (2) compare baseline characteristics and game performance indicators for adherence prediction, and (3) test ensemble models that use baseline characteristics and game performance data to predict adherence over ten weeks.

Research Design And Method: Using machine learning algorithms including logistic regression, ridge regression, support vector machines, classification trees, and random forests, we predicted adherence from weeks 3 to 12. Predictors included game performance metrics in the first two weeks and baseline measures. These models' robustness and generalizability were tested through five-fold cross-validation.

Results: The findings indicated that game performance measures were superior to baseline characteristics in predicting adherence. Notably, the games "Supply Run," "Ante Up," and "Sentry Duty" emerged as significant adherence predictors. Key performance indicators included the highest level achieved, total game sessions played, and overall gameplay proportion. A notable finding was the negative correlation between initial high achievement levels and sustained adherence, suggesting that maintaining a balanced difficulty level is crucial for long-term engagement. Conversely, a positive correlation between the number of sessions played and adherence highlighted the importance of early active involvement.

Discussion And Implications: The insights from this research inform just-in-time strategies to promote adherence to cognitive training programs, catering to the needs and abilities of the aging population. It also underscores the potential of tailored, gamified interventions to foster long-term adherence to cognitive training.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446454PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311279PLOS

Publication Analysis

Top Keywords

game performance
24
cognitive training
16
performance data
12
adherence
12
performance indicators
12
baseline characteristics
12
predicting adherence
8
adherence gamified
8
gamified cognitive
8
performance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!