The convenient liver model in vitro recapitulating the hepatic functions, metabolism, and even steatohepatitis to perform the accurate drug evaluation is still challenging because of the unattainable hominine physiological microenvironment in vitro. Here, the progressed stages of nonalcoholic steatohepatitis (NASH) disease were precisely modeled to accurately evaluate the performance of antilipemic based on the dynamic liver chip adopting the well-coupled microfluidics, which well recapitulated the normal and steatohepatitis of liver in vitro. In brief, the mild nutrient flow and sufficient oxygen supply for parenchymal liver cells could be well supplied through the endothelial cells layer that mimicked the real physiological barrier of endothelium, while the loading of drugs might be obtained by directly adding drug into the running nutrient flow to mimic the intravenously administrable. The progressed degree of steatohepatitis could be directly reflected by the amount of intramyocellular lipid content (IMLC) of the HepG2 cell hepatocyte layer in wells that were induced by different concentrations of free fatty acids (FFA). To prove the concept of the liver chip in drug evaluation, an accurate assessment of the performance of firsocostat, the acetyl-CoA carboxylase (ACC) inhibitor of hepatic mitochondria of hepatocytes, was carried out. The subtle time dependence of firsocostat treatment to different progressed stages of NASH was clearly figured out. Therefore, we prospect the liver chip that adopted well-coupled microfluidics could be an accurate and standard liver model in vitro to carry out the antilipemic evaluation and screening, which significantly enlightens the drug evaluation by liver on chip in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c03234 | DOI Listing |
Cell Mol Life Sci
December 2024
Department of Internal Medicine and Gastroenterology, Internistisches Klinikum München Süd, Am Isarkanal 36, Munich, Germany.
Clin Mol Hepatol
December 2024
Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea.
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Department of Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
The increasing focus of small extracellular vesicles (sEVs) in liquid biopsy has created a significant demand for streamlined improvements in sEV isolation methods, efficient collection of high-quality sEV data, and powerful rapid analysis of large data sets. Herein, we develop a high-throughput dual-use mass spectroscopic chip array (DUMSCA) for the rapid isolation and detection of plasma sEVs. The DUMSCA realizes more than a 50% increase in speed compared to traditional method and confirms proficiency in robust storage, reuse, high-efficiency desorption/ionization, and metabolite quantification.
View Article and Find Full Text PDFIntroduction: Macrophages abundantly express liver X receptors (LXRs), which are ligand-dependent transcription factors and sensors of several cholesterol metabolites. In response to agonists, LXRs induce the expression of key lipid homeostasis regulators. Crosstalk between LXRs and inflammatory signals exist in a cell type- and gene-specific manner.
View Article and Find Full Text PDFTalanta
December 2024
Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China. Electronic address:
Lipidomics has demonstrated significant potential for disease diagnosis and prediction. The development and optimization of a robust mass spectrometry (MS) platform for lipidome analysis is critically important, as it can facilitate biomarker discovery, cohort testing, and performance evaluation in clinical lipidomics studies. In this work, we developed a high-throughput and reliable platform, termed MS Lab on a Chip (MS LOC), which integrates the MetArray chip, an automated lipidomics pretreatment protocol, and the reflectron matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) instrument.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!