Objective: Current shear wave elastography methods primarily focus on 2D imaging. To explore mechanical properties of biological tissues in 3D, a four-dimensional (4D, x, y, z, t) ultrasound shear wave elastography is required. However, 4D ultrasound shear wave elastography is still challenging due to the limitation of the hardware of standard ultrasound acquisition systems. In this study, we introduce a novel method to achieve 4D shear wave elastography, named sequential-based excitation shear wave elastography (SE-SWE). This method can achieve 4D elastography implemented by a 1024-element 2D array with a standard ultrasound 256-channel system.
Methods: The SE-SWE method employs sequential excitation to generate shear waves, and utilizes a 2D array, dividing it into four sub-sections, to capture shear waves across multiple planes. This process involves sequentially exciting each sub-section to capture shear waves, followed by compounding the acquired data from these subsections.
Results: The phantom studies showed strong concordance between the shear wave speeds (SWS) measured by SE-SWE and expected values, confirming the accuracy of this method and potential to differentiate tissues by stiffness. In ex vivo chicken breast experiments, SE-SWE effectively distinguished between orientations relative to muscle fibers, highlighting its ability to capture the anisotropic properties of tissues.
Conclusion: The SE-SWE method advances shear wave elastography significantly by using a 2D array divided into four subsections and sequential excitation, achieving high-resolution volumetric imaging at 1.6mm resolution.
Significance: The SE-SWE method offers a straightforward and effective approach for 3D shear volume imaging of tissue biological properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2024.3472689 | DOI Listing |
Foot Ankle Int
January 2025
Department of Orthopaedic Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China.
Background: The paratenon has been shown to promote Achilles tendon healing, but the evidence supporting the role of paratenon protection technique in Achilles tendon repair is sparse. We retrospectively assessed the results of a paratenon-sparing repair technique vs an open giftbox repair of Achilles tendon ruptures.
Methods: Patients with Achilles tendon rupture who underwent surgical treatment at our hospital between January 2015 and August 2021 were retrospectively reviewed.
Ultrasonics
January 2025
Medical Ultrasound Department for the Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China. Electronic address:
Shear Wave Elastography (SWE) is an imaging technique that detects shear waves generated by tissue excited by Acoustic Radiation Force (ARF), and characterizes the mechanical properties of soft tissue by analyzing the propagation velocity of shear wave. ARF induces a change in energy density through the nonlinear propagation of ultrasound waves, which drives the tissue to generate shear waves. However, the amplitude of shear waves generated by ARF is weak, and the shear waves are strongly attenuated in vivo.
View Article and Find Full Text PDFGland Surg
December 2024
Department of Ultrasound, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China.
Background: When papillary thyroid carcinoma (PTC) is accompanied by Hashimoto's thyroiditis (HT), it is often challenging for preoperative ultrasound to distinguish between central lymph node enlargement caused by PTC metastasis and inflammatory reaction due to HT. However, central lymph node metastasis (CLNM) is closely associated with the risk of PTC recurrence after surgery. In this study, we developed a model to predict in patients with PTC combined with HT, based on conventional ultrasound characteristics and shear wave elastography (SWE) quantitative parameters of the primary lesion.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943-5216, USA.
The shear wave speed is often small compared to the compressional wave speed in the top part of the seabed, where acoustic normal modes penetrate. In sediments with weak but finite shear rigidity, the strongest conversion from compressional to shear waves occurs at interfaces within the sediment. Shear wave generation at such interfaces and interference within sediment layers lead to first-order perturbations in the normal mode phase speed and contributions to sound attenuation, which vary rapidly with frequency.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Ultrasound Medical, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
Background: The objective of this study was to comprehensively review the literature on Shear Wave Elastography (SWE), a non-invasive imaging technique prevalent in medical ultrasound. SWE is instrumental in assessing superficial glandular tissues, abdominal organs, tendons, joints, carotid vessels, and peripheral nerve tissues, among others. By employing bibliometric analysis, we aimed to encapsulate the scholarly contributions over the past two decades, identifying key research areas and tracing the evolutionary trajectory of SWE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!