Adeno-associated virus (AAV) is a well-known gene delivery tool with a wide range of applications, including as a vector for gene therapies. However, the molecular mechanism of its cell entry remains unknown. Here, we performed coarse-grained molecular dynamics simulations of the AAV serotype 2 (AAV2) capsid and the universal AAV receptor (AAVR) in a model plasma membrane environment. Our simulations show that binding of the AAV2 capsid to the membrane induces membrane curvature, along with the recruitment and clustering of GM3 lipids around the AAV2 capsid. We also found that the AAVR binds to the AAV2 capsid at the VR-I loops using its PKD2 and PKD3 domains, whose binding poses differs from previous structural studies. These first molecular-level insights into AAV2 membrane interactions suggest a complex process during the initial phase of AAV2 capsid internalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492248PMC
http://dx.doi.org/10.1021/acs.jpcb.4c03087DOI Listing

Publication Analysis

Top Keywords

aav2 capsid
20
adeno-associated virus
8
aav2
6
membrane
5
capsid
5
coarse-grained simulations
4
simulations adeno-associated
4
virus receptor
4
receptor reveal
4
reveal influences
4

Similar Publications

Filtering through AAV Capsid Libraries for Effective Kidney Gene Transfer.

Kidney Int

January 2025

Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Veterans Affairs, Nashville, TN 37235. Electronic address:

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency.

View Article and Find Full Text PDF

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

AAV2-mediated ABD-FGF21 gene delivery produces a sustained anti-hyperglycemic effect in type 2 diabetic mouse.

Life Sci

December 2024

College of Medicine and Health Sciences, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China. Electronic address:

Background: Fibroblast Growth Factor 21 (FGF21) is a naturally occurring peptide hormone involved in the regulation of glycolipid metabolism, and it shows promise as a potential treatment for type 2 diabetes mellitus (T2DM). However, the short half-life and poor pharmacokinetics of native FGF21 limit its efficacy in reducing hyperglycemia in vivo. Therefore, maintaining stable and sustained blood concentrations of FGF21 is crucial for its role as an effective regulator of glycolipid metabolism in vivo.

View Article and Find Full Text PDF

αFAP-specific nanobodies mediate a highly precise retargeting of modified AAV2 capsids thereby enabling specific transduction of tumor tissues.

Mol Ther Methods Clin Dev

December 2024

AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany.

Due to the refractiveness of tumor tissues to adeno-associated virus (AAV) transduction, AAV vectors are poorly explored for cancer therapy delivery. Here, we aimed to engineer AAVs to target tumors by enabling the specific engagement of fibroblast activation protein (FAP). FAP is a cell surface receptor distinctly upregulated in the reactive tumor stroma, but rarely expressed in healthy tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!