Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Given the widespread presence of micropollutants in urban water systems, it is imperative to gain a comprehensive understanding of their degradation pathways. This paper focuses on sulfamethoxazole (SMX) as a model molecule due to its extensive study, aiming to elucidate its degradation pathways in biological (BIO) and oxidative (AOP) processes. Numerous reaction pathways are outlined in scientific papers. However, a significant deficiency in current methodologies has led to the development of a novel meta-analytical approach, seeking consensus among researchers by synthesizing data from studies characterized by their heterogeneity and contradictions. As an innovative alternative, probabilistic graphical models such as Bayesian networks (BNs) could illuminate the relationships and dependencies between various transformation products, providing a holistic view of the degradation process. Based on the analysis of an extensive bibliography gathering more than 45 articles for more than 140 molecules and 177 reaction pathways, this study proposes a meta-analysis methodology based on Bayesian networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-34982-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!