In this work, we have synthesized a set of peptoid-based histone deacetylase inhibitors (HDACi) with a substituted hydrazide moiety as zinc-binding group. Subsequently, all compounds were evaluated in biochemical HDAC inhibition assays and for their antiproliferative activity against native and cisplatin-resistant cancer cell lines. The hydrazide derivatives with a propyl or butyl substituent (compounds and ) emerged as the most potent class I HDAC selective inhibitors (HDAC1-3). Further, compounds and outperformed entinostat in cytotoxicity assays and were able to reverse chemoresistance in cisplatin-resistant A2780 (ovarian) and Cal27 (head-neck) cancer cell lines. Moreover, the hydrazide derivatives and showed strong synergism with cisplatin (combination indices <0.2), again outperforming entinostat, and increased DNA damage, p21, and pro-apoptotic BIM expression, leading to caspase-mediated apoptosis and cell death. Thus, compounds and represent promising lead structures for developing new HDACi capable of reversing chemoresistance in cisplatin resistant cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.4c01817DOI Listing

Publication Analysis

Top Keywords

reverse chemoresistance
8
cancer cell
8
cell lines
8
lines hydrazide
8
hydrazide derivatives
8
hydrazide-based class
4
class selective
4
selective hdac
4
hdac inhibitors
4
inhibitors completely
4

Similar Publications

Targeting Metabolic Adaptation of Colorectal Cancer with Vanadium-Doped Nanosystem to Enhance Chemotherapy and Immunotherapy.

Adv Sci (Weinh)

December 2024

Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

Self-assembled natural triterpenoids for the delivery of cyclin-dependent kinase 4/6 inhibitors to enhance cancer chemoimmunotherapy.

J Control Release

December 2024

Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China; Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China. Electronic address:

Immunogenic cell death (ICD) has recently emerged as a promising strategy in reinforcing anti-PD-L1 blockade immunotherapy of triple-negative breast cancer (TNBC). The CDK4/6 inhibitor palbociclib (PAL), as a clinical star medicine targeting the cell cycle machinery, is an ideal candidate for fabricating a highly efficient ICD inducer for TNBC chemoimmunotherapy. However, the frequently observed chemoresistance and clinical adverse effects, as well as significant antagonistic effects when co-administered with certain chemotherapeutics, have seriously restricted the efficiency of PAL and the feasibility of combination strategies.

View Article and Find Full Text PDF

Fucosyltransferase 4 upregulates P-gp expression for chemoresistance via NF-κB signaling pathway.

Biochim Biophys Acta Gen Subj

December 2024

Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:

Article Synopsis
  • Multidrug resistance (MDR) complicates the development of effective chemotherapy, with previous research showing that GnT-III expression decreases chemoresistance and that fucosylation is heightened in resistant cell models.
  • Using advanced techniques like CRISPR/Cas9, this study created a FUT4 knockout cell line to assess how fucosylation affects drug resistance by analyzing various gene expressions and drug response.
  • The findings revealed that knocking out FUT4 lowered P-glycoprotein levels and enhanced drug sensitivity, indicating that FUT4 plays a pivotal role in regulating P-glycoprotein expression through the NF-κB signaling pathway, positioning it as a potential target for overcoming MDR in cancer treatment.
View Article and Find Full Text PDF

Four-pronged reversal of chemotherapy resistance by mangiferin amphiphile.

J Control Release

December 2024

Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China. Electronic address:

Despite significant advances in diverse cancer treatment methods, chemotherapy remains the primary approach, and the development of chemoresistance is still a persistent problem during treatment. Here, we developed a derivative of the natural product mangiferin as a carrier for delivering chemotherapeutic drug, aiming to overcome drug resistance through a distinctive four-pronged strategy, including modulation of inflammatory tumor microenvironment (TME), induction of ferroptosis, deep tumor penetration, and the combinatory anticancer effects. After clarifying the promotion effects of the cancer associated fibroblasts (CAFs) in chemoresistance, and leveraging our previous elucidation of the anti-inflammatory and ferroptosis-inducing ability of mangiferin, we synthesized mangiferin amphiphile (MMF) and developed a self-assembled carrier-free nanomedicine, named MP, through the self-assembly of MMF and the representative chemotherapeutic drug paclitaxel (PTX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!