Microwave spectra of both the and isomers of 1,2,3,3,3-pentafluoropropene along with all three of the singly substituted C isotopologues for each are obtained using broadband chirped-pulse Fourier transform microwave spectroscopy from 2.0-18.1 GHz. Associated quantum chemistry calculations show that the barrier to internal rotation of the CF group is significantly higher for the isomer, which is stabilized by an intramolecular hydrogen bond, although the barriers in both isomers are sufficiently high to prevent the observation of any effects due to internal rotation. The normal isotopologues of the argon heterodimers for both isomers are also observed in the broadband spectrum and a Balle-Flygare cavity Fourier transform microwave spectrometer is used to obtain the 5.0-20.6 GHz spectra of the corresponding C isotopologues. In each case, the argon atom locates so as to maximize its interactions with areas of significant electron density. However, mapped electrostatic potential surfaces indicate that the areas of greatest nucleophilicity are different for the two isomers, suggesting that they may interact differently in forming heterodimers with protic acids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472316PMC
http://dx.doi.org/10.1021/acs.jpca.4c05449DOI Listing

Publication Analysis

Top Keywords

microwave spectra
8
argon atom
8
fourier transform
8
transform microwave
8
internal rotation
8
modulating electrostatic
4
electrostatic properties
4
properties noncovalent
4
noncovalent interactions
4
interactions structural
4

Similar Publications

A new method for the precise semiempirical determination of the basic parameters (structural parameters and parameters of the intramolecular potential energy surface, PES) of a molecule on the basis of highly accurate experimental data from the microwave and submillimeter-wave regions is suggested. The options and advantages of this method in comparison with the other methods of molecular PES determination are discussed using a diatomic molecule as an appropriate illustration. The HCl molecule is exploited as a suitable example.

View Article and Find Full Text PDF

A rise in antimicrobial resistance coupled with consumer preferences towards natural preservatives has resulted in increased research towards investigating antimicrobial compounds from natural sources such as macroalgae (seaweeds), which contain antioxidant, antimicrobial, and anticancer compounds. This study investigates the antimicrobial activity of compounds produced by the Irish seaweed against and , bacterial species which are relevant for food safety. Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), ultrasound-microwave-assisted extraction (UMAE), and conventional extraction technologies (maceration) were applied to generate extracts from , followed by their preliminary chemical composition (total phenolic content, total protein content, total soluble sugars) and antimicrobial activity (with minimum inhibitory concentration determined by broth microdilution methods), examining also the molecular weight distribution (via high performance size exclusion chromatography) and oligosaccharide fraction composition (via high-performance liquid chromatography) of the polysaccharides, as they were the predominant compounds in these extracts, aiming to elucidate structure-function relationships.

View Article and Find Full Text PDF

Effect of Drying and Microwave-Assisted Extraction Parameters on Variety Koseret Essential Oil Yield.

Food Technol Biotechnol

December 2024

Hanbit Flavor and Fragrance Co. Ltd., 88 Sinwon-ro, Youngtong-gu, 101-1511 Gyeonggi-do, South Korea.

Research Background: Green extraction technologies, such as microwave-assisted extraction, have been used to replace conventional methods of isolating essential oils from plants. In this study, the essential oil was extracted from the variety koseret using the advanced method of microwave-assisted hydrodistillation. The main objective was to investigate the effect of irradiation time, microwave power and particle size on the yield and chemical composition of the essential oil extracted from leaves dried in an oven at 50 °C and room temperature.

View Article and Find Full Text PDF

Correlation of Phase Structure, Defect Relaxation, and Microwave Dielectric Properties in Low-Loss MgTiO Ceramic Systems.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Low-loss microwave dielectrics are of significant importance for the miniaturization and integration of microwave devices. In this paper, the ceramics of nominal composition MgTiO ( = 3-6) are synthesized, and the correlations among their phase compositions, defect behaviors, and microwave dielectric properties are systematically investigated. The analyses indicate that the MgTiO ceramics are a biphasic system consisting of hexagonal ilmenite-structured MgTiO and cubic spinel-structured MgTiO.

View Article and Find Full Text PDF

Progress in understanding the infrared spectrum of the H2O-O2 dimer.

J Chem Phys

January 2025

Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada.

Spectra of the weakly bound H2O-O2 dimer are studied in the region of the H2O ν2 band using a tunable quantum cascade laser to probe a pulsed supersonic slit jet expansion. These are the first gas-phase infrared spectra of H2O-O2 and among only a few such results for O2-containing complexes. Almost 100 infrared lines are assigned based on the ground state combination differences from the microwave spectrum of H2O-O2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!