Neutron measurement is the primary tool in the SPARC tokamak for fusion power (Pfus) monitoring, research on the physics of burning plasmas, validation of the neutronics simulation workflows, and providing feedback for machine protection. A demanding target uncertainty (10% for Pfus) and coverage of a wide dynamic range (>8 orders of magnitude going up to 5 × 1019 n/s), coupled with a fast-track timeline for design and deployment, make the development of the SPARC neutron diagnostics challenging. Four subsystems are under design that exploit the high flux of direct DT and DD plasma neutrons emanating from a shielded opening in a midplane diagnostic port. The systems comprise a set of ∼15 flux monitors, mainly ionization chambers and proportional counters for measurement of the neutron yield rate, two independent foil activation systems for measurement of the neutron fluence, a spectrometric radial neutron camera for poloidal profiling of the plasma emissivity, and a high-resolution magnetic proton recoil spectrometer for measurement of the core neutron spectrum. Together, the four systems ensure redundancy of sensors and methods and aim to provide high resolutions of time (10 ms), space (∼7 cm), and energy (<2% at 14 MeV). This paper presents the broader objectives behind the preliminary design of the SPARC neutron diagnostics and discusses the ongoing studies on neutronics, detector comparisons, prototyping, and integration with the unique infrastructure of SPARC. Engineering details of the four subsystems and the concepts for in situ neutron calibration are also highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0219538 | DOI Listing |
Rev Sci Instrum
November 2024
Department of Physics, University of Milano-Bicocca, Milan 20126, Italy.
The design of a compact 2 × 2 diamond matrix with independent and redundant pixels optimized for the spectrometric neutron camera of the SPARC tokamak is presented in this article. Such a matrix overcomes the constraints in dynamic range posed by the size of a single diamond sensor while keeping the ability to perform energy spectral analysis, marking a significant advancement in tokamak neutron diagnostics. A charge pre-amplifier based on radio frequency amplifiers based on InGaP technology transistors, offering up to 2 GHz bandwidth with high robustness against radiation, has been developed.
View Article and Find Full Text PDFRev Sci Instrum
November 2024
Commonwealth Fusion Systems, Devens, Massachusetts 01434, USA.
With plasma currents up to 8.7 MA, the SPARC tokamak runs the risk of forming multi-MA beams of relativistic "runaway" electrons (REs), which could damage plasma facing components if unmitigated. The infrared (IR) and visible imaging and visible spectroscopy systems in SPARC are designed with measurements of synchrotron emission from REs in mind.
View Article and Find Full Text PDFRev Sci Instrum
November 2024
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Rev Sci Instrum
October 2024
Commonwealth Fusion Systems, Devens, Massachusetts 01434, USA.
The SPARC tokamak is a high-field, Bt0 ∼12 T, medium-sized, R0 = 1.85 m, tokamak that is presently under construction in Devens, MA, led by Commonwealth Fusion Systems. It will be used to de-risk the high-field tokamak path to a fusion power plant and demonstrate the commercial viability of fusion energy.
View Article and Find Full Text PDFRev Sci Instrum
October 2024
Commonwealth Fusion Systems, Devens, Massachusetts 01434, USA.
A suite of plasma diagnostics will be installed on the SPARC tokamak to allow for real-time plasma control, an investigation of high-field tokamak physics, and to de-risk the design of ARC, a compact fusion power plant with the aim to supply electricity to the grid. Among these diagnostics is the neutral gas diagnostics system (NTGS), a set of pressure sensors and gas analyzers used to monitor neutral pressure and gas composition for plasma control, optimization of wall conditioning, and helium ash removal, among other measurement functions linked to operational and scientific research needs. While reliable measurements of neutral pressure and gas composition have been fielded on existing magnetic-confinement fusion devices, SPARC represents a step increase in challenge due to its larger power density, higher field, high vacuum vessel bake temperatures, and higher neutron flux environment, as well as a step decrease in the accessibility for maintenance of in-vessel sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!