AI Article Synopsis

  • The study investigates the effectiveness of the anti-EGFR monoclonal antibody panitumumab combined with carboplatin and paclitaxel for treating chemotherapy-resistant triple-negative breast cancer (TNBC) patients.
  • It included 43 patients who had not sufficiently responded to prior doxorubicin and cyclophosphamide treatment, achieving a combined pathological complete response/residual cancer burden class I rate of 30.2%.
  • The results indicate that panitumumab shows promise as part of neoadjuvant therapy for TNBC, warranting further evaluation in larger clinical trials.

Article Abstract

Purpose: Epidermal growth factor receptor (EGFR) pathway activation causes chemotherapy resistance, and inhibition of the EGFR pathway sensitizes triple-negative breast cancer (TNBC) cells to chemotherapy in preclinical models. Given the high prevalence of EGFR overexpression in TNBC, we conducted a single-arm phase II study of panitumumab (anti-EGFR monoclonal antibody), carboplatin, and paclitaxel as the second phase of neoadjuvant therapy (NAT) in patients with doxorubicin and cyclophosphamide (AC)-resistant TNBC (NCT02593175).

Patients And Methods: Patients with early-stage, AC-resistant TNBC, defined as disease progression or ≤80% reduction in tumor volume after four cycles of AC, were eligible for this study and received panitumumab (2.5 mg/kg i.v., every week × 13), paclitaxel (80 mg/m2 i.v. every week × 12), and carboplatin (AUC = 4 i.v., every 3 weeks × 4) as the second phase of NAT. A two-stage Gehan-type design was used to detect an improvement in the pathological complete response (pCR)/residual cancer burden class I (RCB-I) rate from 5% to 20%. Whole-exome sequencing was performed on diagnostic tumor biospecimens, where available.

Results: From November 3, 2016, through August 23, 2021, 43 patients with AC-resistant TNBC were enrolled. The combined pCR/RCB-I rate was 30.2%. The most common treatment-related adverse events were neutropenia (72%) and anemia (61%), with 7 (16%), 16 (37%), and 8 (19%) patients experiencing grade 4 neutropenia, grade 3 neutropenia, and grade 3 anemia, respectively. No new safety signals were observed.

Conclusions: This study met its primary endpoint (pCR/RCB-I = 30.2% vs. 5% in historical controls), suggesting that panitumumab should be evaluated as a component of NAT in patients with chemotherapy-resistant TNBC in a larger, randomized clinical trial.

Significance: The epidermal growth factor receptor (EGFR) pathway has been implicated as a driver of chemotherapy resistance in triple-negative breast cancer (TNBC). Here, we evaluate the combination of panitumumab, carboplatin, and paclitaxel as the second phase of neoadjuvant therapy (NAT) in patients with AC-resistant TNBC. This study met its primary efficacy endpoint, and molecular alterations in EGFR pathway genes did not seem to influence response to the study regimen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520071PMC
http://dx.doi.org/10.1158/2767-9764.CRC-24-0255DOI Listing

Publication Analysis

Top Keywords

egfr pathway
16
ac-resistant tnbc
16
epidermal growth
12
growth factor
12
factor receptor
12
triple-negative breast
12
breast cancer
12
second phase
12
nat patients
12
phase study
8

Similar Publications

This study aimed to assess the composition of essential oil (EBE) and identify potential targets for inhibiting human hepatocellular carcinoma cell proliferation. The plants were collected from four regions: Jiuzhi, Qinghai; Ruoergai, Sichuan; Aba, Sichuan; and Jiulong, Sichuan. Four EBEs (named No.

View Article and Find Full Text PDF

Exploring the therapeutic potential of natural compounds against hepatocellular carcinoma (HCC): a computational approach.

EXCLI J

November 2024

Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea.

Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer related deaths globally. Despite advancements in treatment, drug resistance and adverse side effects have spurred the search for novel therapeutic strategies. This study aimed to investigate how the can inhibit key targets involved in HCC progression.

View Article and Find Full Text PDF

Nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, exhibits a complex role in cancer biology. Genetic mutations in the Kelch-like ECH-associated protein 1 (KEAP1)/NRF2 system, which lead to NRF2 hyperactivation, are found in 20% to 30% of lung cancer cases. This review explores the intricate interplay between NRF2 and key oncogenic pathways in lung cancer, focusing on the interaction of KEAP1/NRF2 system with Kirsten rat sarcoma virus (KRAS), tumor protein P53 (TP53), epidermal growth factor receptor (EGFR), and phosphatidylinositol 3-kinases (PI3K)/AKT signaling.

View Article and Find Full Text PDF

Recent studies on head and neck squamous cell carcinoma (HNSCC) tumorigenesis have revealed several dysregulated molecular pathways. The phosphatidylinositol-3-kinase (PI3K) signaling pathway is frequently activated in HNSCC, making it an attractive target for therapies. PHT-427 is a dual inhibitor of PI3K and the mammalian target of AKT/PDK1.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are an emerging strategy in cancer therapy, enhancing precision and efficacy by linking targeted antibodies to potent cytotoxic agents. This study introduces a novel ADC that combines ribonuclease A (RNase A) with cetuximab (Cet), an anti-EGFR monoclonal antibody, through a polyethylene glycol (PEG) linker (RN-PEG-Cet), aimed to induce apoptosis in KRAS mutant colorectal cancer (CRC) via a ROS-mediated pathway. RN-PEG-Cet was successfully synthesized and characterized for its physicochemical properties, retaining full enzymatic activity in RNA degradation and high binding affinity to EGFR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!