We consider a statistical mechanical model of a generic flexible polyelectrolyte, comprised of identically charged monomers with long-range electrostatic interactions and short-range interactions quantified by a disorder field along the polymer contour sequence, which is randomly quenched. The free energy and the monomer density profile of the system for no electrolyte screening are calculated in the case of a system composed of two infinite planar bounding surfaces with an intervening oppositely charged polyelectrolyte chain. We show that the effect of the contour sequence disorder, mediated by short-range interactions, leads to an enhanced localization of the polyelectrolyte chain and a first order phase transition at a critical value of the inter-surface spacing. This phase transition results in an abrupt change of the pressure from negative to positive values, effectively eliminating polyelectrolyte mediated bridging attraction.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0228162DOI Listing

Publication Analysis

Top Keywords

phase transition
12
order phase
8
short-range interactions
8
contour sequence
8
polyelectrolyte chain
8
sequence disorder-induced
4
disorder-induced order
4
transition confined
4
confined polyelectrolytes
4
polyelectrolytes consider
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!