Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The divided subtracted inversion recovery (dSIR) is a high T contrast technique that shows changes in white matter in patients with traumatic brain injury and hypoxic injury. The changes can be explained by small differences in T; however, to date, there has been no independent validation of the technique using a standard reference. The present study develops the theory of the dSIR signal and performs validation using the NIST/ISMRM T phantom. Non-idealities are explored, including the influence of noise bias and finite repetition time (TR), which leads to the introduction of an optimally efficient TR for inversion recovery acquisitions. Results show excellent agreement with theoretical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.5269 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!