A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The correlation of the liquidus curves and valence electron structures of a ternary lithium halide molten-salt electrolyte for liquid metal batteries. | LitMetric

Liquid metal batteries have received considerable attention owing to their excellent properties. However, an electrolyte with low melting temperature is required to decrease operating temperature for the safety of liquid metal batteries and for saving energy. For revealing the mechanism of low liquefaction temperature, an empirical electron theory of solid molecules was used to study the thermal properties of pure lithium halides and their ternary-phase systems systematically. The theoretical bond lengths, melting points, liquefaction temperatures and mixed energies of pure lithium halides and their ternary phases match the experimental values well. The mechanism of liquefaction temperature for ternary lithium halides depends on their valence electron structures. The liquefaction temperature can be stabilized on a liquidus line or curve through the modulation of the constant number of covalent electrons () and lattice electrons (). The liquefaction temperatures on various liquidus lines and curves are positively related to the linear density of valence electron pairs on the strong Li-X bond, bonding factor, and number of valence electrons in the s orbital but are negatively related to the number of valence electrons in the p orbital. With an increase in the linear density of the valence electron pair number and bonding factor, bond strength is enhanced, which increases the resistance of the strong Li-X bond against the break force induced by thermal phonon vibrations, and more thermal phonons with high vibrating energy are required for breaking the strongest Li-X bond at a higher temperature; therefore, the liquefaction temperature increases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp03135kDOI Listing

Publication Analysis

Top Keywords

valence electron
16
liquefaction temperature
16
liquid metal
12
metal batteries
12
lithium halides
12
li-x bond
12
electron structures
8
ternary lithium
8
pure lithium
8
liquefaction temperatures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!