Nutrient Removal and Recovery from Urine Using Bio-Mineral Formation Processes.

ACS Sustain Resour Manag

Cranfield Water Science Institute, Cranfield University, College Road, Cranfield MK43 0AL, UK.

Published: September 2024

Harvesting nutrients from waste presents a promising initiative to advance and deliver the circular economy in the water sector while mitigating local shortages of mineral fertilizers worldwide. Urine, a small fraction of municipal wastewater, holds substantial amounts of nitrogen, orthophosphate (PO-P), and chemical oxygen demand (COD). Separating urine aids targeted nutrient recovery, emissions reduction, and releasing capacity in wastewater treatment plants and taps into overlooked vital nutrients like magnesium (Mg) and potassium (K), essential for plant growth. The ability of selected microorganisms (, and ) to remove and recover nutrients from fresh urine through bio-mineral formation of struvite was investigated. The selected microorganisms outcompeted native microbes in open-culture fresh urine, and intact cell counts were 1.3 to 2.3 times larger than in noninoculated controls. PO-P removal reached 50% after 4 days of incubation and 96% when urine was supplemented with Mg. Additionally, soluble COD was reduced by 60%; urea hydrolysis was only < 3% in controls, but it reached 35% in inoculated urine after 10 days. The dominant morphology of recovered precipitates was euhedral and prismatic, identified using energy dispersive spectroscopy and X-ray diffraction as struvite (i.e., bio-struvite), but K was also present at 5%. Up to 1 g bio-struvite/L urine was recovered. These results demonstrate the ability of bio-mineral producing microorganisms to successfully grow in urine and recover nutrients such as bio-struvite, that could potentially be used as sustainable fertilizers or chemicals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440639PMC
http://dx.doi.org/10.1021/acssusresmgt.4c00025DOI Listing

Publication Analysis

Top Keywords

urine
9
urine bio-mineral
8
bio-mineral formation
8
selected microorganisms
8
recover nutrients
8
fresh urine
8
nutrient removal
4
removal recovery
4
recovery urine
4
formation processes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!