Imaging Lymphoma With F-18 Fluorodeoxyglucose PET-CT: What Should Be Known About Normal Variants, Pitfalls, and Artifacts?

Front Nucl Med

Department of Nuclear Medicine and Molecular Imaging, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa.

Published: February 2022

F fluorodeoxyglucose ([F-18] FDG) PET-CT has gained popularity in the management of many types of malignancies. Today, imaging patients with lymphoma using of [F-18] FDG PET-CT not only is considered as a state-of-the-art tool but also has taken a central place for therapeutic decisions. In fact, accurate staging at diagnosis is imperative to prevent under treatment of individuals with advanced disease. In Hodgkin's lymphoma, in particular, the current role of interim [F-18] FDG PET imaging goes beyond speculations in the adaptation of different therapeutic strategies. Therefore, the use of such a critical imaging modality should go hand in hand with sound interpretation that provides accurate results. As the number patients referred for PET-CT continues to increase, imaging specialists should remain aware of the inherent limitations linked to the integrated imaging system that may introduce potential pitfalls related to the machine or the administered [F-18] FDG. Knowledge of the normal physiologic biodistribution of [F-18] FDG, its physiologic variants, and of all the potential pitfalls and artifacts is paramount to avoid misinterpretation. Recognition of the limitations of [F-18] FDG PET-CT will increase the confidence of practicing clinicians on the modality and impact positively on the management of patients. In this article, we will review the normal physiological variants, technical artifacts, and diagnostic pitfalls in lymphoma. Highlighting the limitations of [F-18] FDG PET-CT imaging should warn interpreting specialists to find measures that mitigate them and improve reporting results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440966PMC
http://dx.doi.org/10.3389/fnume.2021.826046DOI Listing

Publication Analysis

Top Keywords

[f-18] fdg
28
fdg pet-ct
16
potential pitfalls
8
limitations [f-18]
8
imaging
7
[f-18]
7
fdg
7
pet-ct
6
imaging lymphoma
4
lymphoma f-18
4

Similar Publications

Hepatocellular carcinoma (HCC) and biliary tract cancers (BTC) pose significant diagnostic and therapeutic challenges. Magnetic resonance imaging (MRI) and multiphase computed tomography (CT) have been the preferred imaging modalities for diagnosis, staging, and surveillance of patients with these malignancies. The best clinical outcomes depend on the appropriate selection of treatment options from the tools available in neo-adjuvant therapy, surgical resection, locoregional therapy, liver transplantation, and adjuvant therapy.

View Article and Find Full Text PDF

Background: Despite TSH suppressive therapy improve the prognosis for the patient with differentiated thyroid cancer (DTC), there is an increasing concern regarding the potentially harmful effects of lifelong TSH suppression. Therefore, we aimed to examine the changes in body composition under TSH suppression in postmenopausal women with DTC.

Methods: The body composition was assessed by the volumes as following; fat tissues of the epicardium and abdominal visceral and subcutaneous areas; bilateral psoas muscle or thigh muscle.

View Article and Find Full Text PDF

Texture analysis generates image parameters from F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). Although some parameters correlate with tumor biology and clinical attributes, their types and implications can be complex. To overcome this limitation, pseudotime analysis was applied to texture parameters to estimate changes in individual sample characteristics, and the prognostic significance of the estimated pseudotime of primary tumors was evaluated.

View Article and Find Full Text PDF

Background: To intraindividually compare the diagnostic performance of positron emission computed tomography (F-18-FDG-PET/CT) and diffusion-weighted magnetic resonance imaging (DW-MRI) in a non-inferiority design for the discrimination of peripheral nerve sheath tumours as benign (BPNST), atypical (ANF), or malignant (MPNST) in patients with neurofibromatosis type 1 (NF1).

Results: In this prospective single-centre study, thirty-four NF1 patients (18 male; 30 ± 11 years) underwent F-18-FDG-PET/CT and multi-b-value DW-MRI (11 b-values 0 - 800 s/mm²) at 3T. Sixty-six lesions corresponding to 39 BPNST, 11 ANF, and 16 MPNST were evaluated.

View Article and Find Full Text PDF

Background: A pathological complete response (pCR) rate after neoadjuvant chemotherapy (NAC) is important for the prognosis of early-stage breast cancer. The prediction of an NAC response plays a key role in managing neoadjuvant treatment.

Aims: The aim of this study is to investigate the predictive value of the baseline PETCT FDG (F-18 fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography) SUVmax (the maximum standardized uptake value) for pCR after NAC in early-stage breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!