Functional magnetic resonance imaging (fMRI) studies most commonly use cluster-based inference to detect local changes in brain activity. Insufficient statistical power and disproportionate false-positive rates reportedly hinder optimal inference. We propose a structural connectivity-guided clustering framework, called topological cluster statistic (TCS), that enhances sensitivity by leveraging white matter anatomical connectivity information. TCS harnesses multimodal information from diffusion tractography and functional imaging to improve task fMRI activation inference. Compared to conventional approaches, TCS consistently improves power over a wide range of effects. This improvement results in a 10%-50% increase in local sensitivity with the greatest gains for medium-sized effects. TCS additionally enables inspection of underlying anatomical networks and thus uncovers knowledge regarding the anatomical underpinnings of brain activation. This novel approach is made available in the PALM software to facilitate usability. Given the increasing recognition that activation reflects widespread, coordinated processes, TCS provides a way to integrate the known structure underlying widespread activations into neuroimaging analyses moving forward.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424043PMC
http://dx.doi.org/10.1162/netn_a_00375DOI Listing

Publication Analysis

Top Keywords

topological cluster
8
cluster statistic
8
statistic tcs
8
structural connectivity-guided
8
tcs
6
tcs structural
4
connectivity-guided fmri
4
fmri cluster
4
cluster enhancement
4
enhancement functional
4

Similar Publications

This study investigates the effectiveness and efficiency of two topological data analysis (TDA) techniques, the conventional Mapper (CM) and its variant version, the Ball Mapper (BM), in analyzing the behavior of six major air pollutants (NO, PM, PM, O, CO, and SO) across 60 air quality monitoring stations in Malaysia. Topological graphs produced by CM and BM reveal redundant monitoring stations and geographical relationships corresponding to air pollutant behavior, providing better visualization than traditional hierarchical clustering. Additionally, a comparative analysis of topological graph structures was conducted using node degree distribution, topological graph indices, and Dynamic Time Warping (DTW) to evaluate the sensitivity and performance of these TDA techniques.

View Article and Find Full Text PDF

Topological phases are robust against weak perturbations, but break down when disorder becomes sufficiently strong. However, moderate disorder can also induce topologically nontrivial phases. Thouless pumping, as a (1+1)D counterpart of the integer quantum Hall effect, is one of the simplest manifestations of topology.

View Article and Find Full Text PDF

The understanding of phenomena falling outside the Ginzburg-Landau paradigm of phase transitions represents a key challenge in condensed matter physics. A famous class of examples is constituted by the putative deconfined quantum critical points between two symmetry-broken phases in layered quantum magnets, such as pressurised SrCu(BO). Experiments find a weak first-order transition, which simulations of relevant microscopic models can reproduce.

View Article and Find Full Text PDF

MiRNAs and lncRNAs are two essential noncoding RNAs. Predicting associations between noncoding RNAs and diseases can significantly improve the accuracy of early diagnosis.With the continuous breakthroughs in artificial intelligence, researchers increasingly use deep learning methods to predict associations.

View Article and Find Full Text PDF

Topological confinement by a membrane anchor suppresses phase separation into protein aggregates: Implications for prion diseases.

Proc Natl Acad Sci U S A

January 2025

Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany.

Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!