Phosphorylated Tau proteins are promising biomarkers for the diagnosis and prognosis of Alzheimer's disease. This study presents a novel voltametric sensor using a vanadium MXene polydopamine (VPDA) redox active composite and a Tau-441-specific polyaniline molecularly imprinted polymer (PANI MIP) for the sensitive detection of Tau-441 in interstitial fluid (ISF) and plasma. The VPDA/PANI MIP sensor demonstrates a broad detection range of 5 fg/mL to 5 ng/mL (122 aM/L to 122 pM/L) in ISF without the use of redox mediators, with a lower limit of detection (LOD) of 2.3 fg/mL (60 aM/L). Furthermore, a handheld device utilizing this technology successfully detects Tau-441 in artificial serum with high sensitivity (5 fg/mL to 150 fg/mL (122 aM/L to 366 aM/L)) and specificity within a clinically relevant range. The rapid detection time (∼32 min) and low cost (∼£20/device) of this sensor highlight its potential for minimally invasive, early AD diagnosis in clinical settings. This advancement aims to facilitate a transition away from invasive cerebrospinal fluid (CSF)-based diagnostic techniques for AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406148PMC
http://dx.doi.org/10.1016/j.biosx.2024.100513DOI Listing

Publication Analysis

Top Keywords

cerebrospinal fluid
8
tau proteins
8
molecularly imprinted
8
122 am/l
8
detection
5
alzheimer's diagnosis
4
diagnosis cerebrospinal
4
fluid probe-free
4
probe-free detection
4
detection tau
4

Similar Publications

Background: Numerous studies have highlighted the role of oxidative stress in Alzheimer's disease (AD) development. Yet, the alignment of systemic and central oxidative stress biomarkers is unclear across diverse populations in the AD continuum. This study aims to assess protein damage levels in plasma and cerebrospinal fluid (CSF) within the AD continuum.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) frequently coexists with cerebral small vessel disease (CSVD) is common in the aging population, yet the underlying mechanisms are not yet fully understood. Both long-term blood pressure variability (BPV) and plasma neurofilament light (PNFL) were identified as potential biomarkers for AD and CSVD. This study aims to understand the mechanisms of comorbidity between AD and CSVD by investigating the associations among BPV, PNFL, and comorbidity.

View Article and Find Full Text PDF

Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Queen's University, Kingston, ON, Canada; D'OR Institute for Research and Education, Rio de Janeiro, Rio de Janeiro, Brazil.

Background: Physical exercise improves overall brain health, cognition, and stimulates the release of extracellular vesicles (EVs) in humans. Exercise upregulates irisin, a myokine derived from fibronectin type III domain-containing protein 5 (FNDC5) previously shown to mediate the beneficial actions of exercise on memory in mouse models of Alzheimer's disease (AD). Here, we investigated if physical exercise upregulates EVs.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Radiology, miami, FL, USA.

Background: Clearance of brain toxins occurs during sleep, although the mechanism remains unknown. Previous studies implied that the intracranial aqueductal cerebrospinal fluid (CSF) oscillations are involved, but no mechanism was suggested. The rationale for focusing on the aqueductal CSF oscillations is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!