Diabetes mellitus (DM) is a prevalent disorder with an urgent need for continuous, precise, and on-site biomarker monitoring devices. The continuous monitoring of DM biomarkers from different biological matrices will become routine in the future, thanks to the promising biosensor design. Lately, employing different nanomaterials in biosensor receptor parts has had a great impact on smart DM monitoring. Among them, gold nanostructures (AuNSs) have arisen as highly potential materials in fabricating precise DM biosensors due to their unique properties. The present study provides an update on the applications of AuNSs in biosensors for detecting glucose as well as other DM biomarkers, such as glycated hemoglobin (HbA1c), glycated albumin (GA), insulin, insulin antibodies, uric acid, lactate, and glutamic acid decarboxylase antibodies (GADA), with a focus on the most important factors in biosensor performance such as sensitivity, selectivity, response time, and stability. Specified values of limit of detection (LOD), linear concentrations, reproducibility%, recovery%, and assay time were used to compare studies. In conclusion, AuNSs, owing to the wide electrochemical potential window and low electrical resistivity, are valuable tools in biosensor design, alongside other biological reagents and/or nanomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442290 | PMC |
http://dx.doi.org/10.3389/fbioe.2024.1446355 | DOI Listing |
Anal Chim Acta
May 2025
Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural University, Beijing, 100083, China. Electronic address:
Background: Immunomagnetic separation is essential for screening pathogenic bacteria to prevent food poisoning. However, free immunomagnetic nanobeads (IMNBs) coexist with IMNB-bacteria conjugates (IBCs) after traditional immunomagnetic separation resulting in the infeasibility for IMNBs on IBCs to further act as signal label in bacterial detection. Although we have demonstrated that magnetophoretic separation at a high flowrate could separate IBCs from IMNBs, partial IMNBs were still found with IBCs due to chaotic flows and resulted in inevitable interferences.
View Article and Find Full Text PDFAnal Chim Acta
May 2025
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China. Electronic address:
Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways.
View Article and Find Full Text PDFTalanta
March 2025
Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy. Electronic address:
microRNAs are small oligonucleotides involved in post-transcriptional gene regulation whose alteration is found in several diseases, including cancer, and therefore their detection is crucial for diagnosis, prognosis, and treatment purposes. Field-Effect Transistor-based biosensors (bioFETs) represent a promising technology for the clinical detection of microRNAs. However, one of the main challenges associated with this technology is the Debye screening, becoming significant at the high ionic strengths required for effective hybridization.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:
The diagnosis of apoptosis is of particular importance for assessing apoptosis-related disease progression and improving the therapy efficiency. Caspase-3 is the most frequently activated cysteine protease and a key mediator of cell apoptosis, therefore, its activity assay is vital. Here, by encapsulating of MAPbI in NH-MIL-125(Ti) and constructing "Z-scheme" structure between CdInS microspheres and CdS quantum dots (QDs) to obtain high-photoelectrochemical (PEC)-stability and large-photocurrent NH-MIL-125(Ti)@MAPbI/Au NPs photocathode and CdInS/CdS QDs photoanode, respectively, a new dual-photoelectrode self-powered PEC platform was constructed for highly sensitive and blocker-free assay of caspase-3 activity.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada; Water Institute, University of Waterloo, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Canada. Electronic address:
Escherichia coli (E. coli) O157:H7 (O157), one of the most common Shiga toxin-producing E. coli, can contaminate water systems causing severe illnesses often accompanied with diarrhea and sometimes life threatening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!